48 research outputs found
Low anti-staphylococcal IgG responses in granulomatosis with polyangiitis patients despite long-term Staphylococcus aureus exposure
Chronic nasal carriage of the bacterium Staphylococcus aureus in patients with the autoimmune disease granulomatosis with polyangiitis (GPA) is a risk factor for disease relapse. To date, it was neither known whether GPA patients show similar humoral immune responses to S. aureus as healthy carriers, nor whether specific S. aureus types are associated with GPA. Therefore, this study was aimed at assessing humoral immune responses of GPA patients against S. aureus antigens in relation to the genetic diversity of their nasal S. aureus isolates. A retrospective cohort study was conducted, including 85 GPA patients and 18 healthy controls (HC). Humoral immune responses against S. aureus were investigated by determining serum IgG levels against 59 S. aureus antigens. Unexpectedly, patient sera contained lower anti-staphylococcal IgG levels than sera from HC, regardless of the patients' treatment, while total IgG levels were similar or higher. Furthermore, 210 S. aureus isolates obtained from GPA patients were characterized by different typing approaches. This showed that the S. aureus population of GPA patients is highly diverse and mirrors the general S. aureus population. Our combined findings imply that GPA patients are less capable of mounting a potentially protective antibody response to S. aureus than healthy individuals
Signalling adjustments to direct and indirect environmental effects on signal perception in meerkats
The efficiency of communication between animals is determined by the perception range of
signals. With changes in the environment, signal transmission between a sender and a
receiver can be influenced both directly, where the signal’s propagation quality itself is
affected, and indirectly where the senders or receivers’ behaviour is impaired, impacting for
example the distance between them. Here we investigated how meerkats (Suricata suricatta)
in the Kalahari Desert adjust to these challenges in the context of maintaining group
cohesion through contact calls. We found that meerkats changed their calling rate when signal
transmission was affected indirectly due to increased dispersion of group members as
during a drought, but not under typical wet conditions, when signal transmission was directly
affected due to higher vegetation density. Instead under these wetter conditions, meerkats
remained within proximity to each other. Overall, both direct and indirect environmental
effects on signal perception resulted in an increased probability of groups splitting. In conclusion,
we provide evidence that social animals can flexibly adjust their vocal coordination
behaviour to cope with direct and indirect effects of the environment on signal perception,
but these adjustments have limitations.Supplement 1: Additional information on results of the models fitted for the different analysis.Supplement 2: Additional analysis on change in group speed with regards to the different environmental conditions.The Swiss National Science Foundation, the University of Zurich, and the University of Cambridge.http://www.plosone.orgam2021Mammal Research Institut
Scaling, similarity, and the fourth paradigm for hydrology
In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm) and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing; describe a mutual information framework for testing these hypotheses; describe boundary condition, state, flux, and parameter data requirements across scales to support testing these hypotheses; and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.</p
Multivariable Prediction Model for Biochemical Response to First-Generation Somatostatin Receptor Ligands in Acromegaly
CONTEXT: First-generation somatostatin receptor ligands (fg-SRLs) represent the mainstay of medical therapy for acromegaly, but they provide biochemical control of disease in only a subset of patients. Various pretreatment biomarkers might affect biochemical response to fg-SRLs. OBJECTIVE: To identify clinical predictors of the biochemical response to fg-SRLs monotherapy defined as biochemical response (insulin-like growth factor (IGF)-1 ≤ 1.3 × ULN (upper limit of normal)), partial response (>20% relative IGF-1 reduction without normalization), and nonresponse (≤20% relative IGF-1 reduction), and IGF-1 reduction. DESIGN: Retrospective multicenter study. SETTING: Eight participating European centers. METHODS: We performed a meta-analysis of participant data from 2 cohorts (Rotterdam and Liège acromegaly survey, 622 out of 3520 patients). Multivariable regression models were used to identify predictors of biochemical response to fg-SRL monotherapy. RESULTS: Lower IGF-1 concentration at baseline (odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.72-0.95 IGF-1 ULN, P = .0073) and lower bodyweight (OR = 0.99, 95% CI 0.98-0.99 kg, P = .038) were associated with biochemical response. Higher IGF-1 concentration at baseline (OR = 1.40, (1.19-1.65) IGF-1 ULN, P ≤ .0001), the presence of type 2 diabetes (oral medication OR = 2.48, (1.43-4.29), P = .0013; insulin therapy OR = 2.65, (1.02-6.70), P = .045), and higher bodyweight (OR = 1.02, (1.01-1.04) kg, P = .0023) were associated with achieving partial response. Younger patients at diagnosis are more likely to achieve nonresponse (OR = 0.96, (0.94-0.99) year, P = .0070). Baseline IGF-1 and growth hormo
Contemporary guideline-directed medical therapy in de novo, chronic, and worsening heart failure patients:First data from the TITRATE-HF study
Aims: Despite clear guideline recommendations for initiating four drug classes in all patients with heart failure (HF) with reduced ejection fraction (HFrEF) and the availability of rapid titration schemes, information on real-world implementation lags behind. Closely following the 2021 ESC HF guidelines and 2023 focused update, the TITRATE-HF study started to prospectively investigate the use, sequencing, and titration of guideline-directed medical therapy (GDMT) in HF patients, including the identification of implementation barriers. Methods and results: TITRATE-HF is an ongoing long-term HF registry conducted in the Netherlands. Overall, 4288 patients from 48 hospitals were included. Among these patients, 1732 presented with de novo, 2240 with chronic, and 316 with worsening HF. The median age was 71 years (interquartile range [IQR] 63–78), 29% were female, and median ejection fraction was 35% (IQR 25–40). In total, 44% of chronic and worsening HFrEF patients were prescribed quadruple therapy. However, only 1% of HFrEF patients achieved target dose for all drug classes. In addition, quadruple therapy was more often prescribed to patients treated in a dedicated HF outpatient clinic as compared to a general cardiology outpatient clinic. In each GDMT drug class, 19% to 36% of non-use in HFrEF patients was related to side-effects, intolerances, or contraindications. In the de novo HF cohort, 49% of patients already used one or more GDMT drug classes for other indications than HF. Conclusion: This first analysis of the TITRATE-HF study reports relatively high use of GDMT in a contemporary HF cohort, while still showing room for improvement regarding quadruple therapy. Importantly, the use and dose of GDMT were suboptimal, with the reasons often remaining unclear. This underscores the urgency for further optimization of GDMT and implementation strategies within HF management.</p
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
The concealed Caledonide basement of Eastern England and the southern North Sea — A review
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
Geographically extensive hybridization between the forest trees American butternut and Japanese walnut
We investigate the question of naturally occurring interspecific hybrids between two forest trees: the native North American butternut (Juglans cinerea L.) and the introduced Japanese walnut (Juglans ailantifolia Carrière). Using nuclear and chloroplast DNA markers, we provide evidence for 29 F1 and 22 advanced generation hybrids in seven locations across the eastern and southern range of the native species. Two locations show extensive admixture (95% J. ailantifolia and hybrids) while other locations show limited admixture. Hybridization appears to be asymmetrical with 90.9 per cent of hybrids having J. ailantifolia as the maternal parent. This is, to our knowledge, the first genetic data supporting natural hybridization between these species. The long-term outcome of introgression could include loss of native diversity, but could also include transfer of useful traits from the introduced species
