58 research outputs found
Vaccination against Foot-and-mouth disease : do initial conditions affect its benefit?
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease
Disease prevention versus data privacy : using landcover maps to inform spatial epidemic models
The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock
The impact of contact tracing in clustered populations
The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in addition to contact tracing, standard “mass action” models are generally inadequate. To consider the impact of mutual contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space. This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks. In this way we contribute to the general theory of network-based interventions against infectious disease
Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition
Clustering is the propensity of nodes that share a common neighbour to be connected. It is ubiquitous in many networks but poses many modelling challenges. Clustering typically manifests itself by a higher than expected frequency of triangles, and this has led to the principle of constructing networks from such building blocks. This approach has been generalised to networks being constructed from a set of more exotic subgraphs. As long as these are fully connected, it is then possible to derive mean-field models that approximate epidemic dynamics well. However, there are virtually no results for non-fully connected subgraphs. In this paper, we provide a general and automated approach to deriving a set of ordinary differential equations, or mean-field model, that describes, to a high degree of accuracy, the expected values of system-level quantities, such as the prevalence of infection. Our approach offers a previously unattainable degree of control over the arrangement of subgraphs and network characteristics such as classical node degree, variance and clustering. The combination of these features makes it possible to generate families of networks with different subgraph compositions while keeping classical network metrics constant. Using our approach, we show that higher-order structure realised either through the introduction of loops of different sizes or by generating networks based on different subgraphs but with identical degree distribution and clustering, leads to non-negligible differences in epidemic dynamics
Vulnerability of the British swine industry to classical swine fever
Classical swine fever (CSF) is a notifiable, highly contagious viral disease of swine which results in severe welfare and economic consequences in affected countries. To improve preparedness, it is critical to have some understanding of how CSF would spread should it be introduced. Based on the data recorded during the 2000 epidemic of CSF in Great Britain (GB), a spatially explicit, premises-based model was developed to explore the risk of CSF spread in GB. We found that large outbreaks of CSF would be rare and generated from a limited number of areas in GB. Despite the consistently low vulnerability of the British swine industry to large CSF outbreaks, we identified concerns with respect to the role played by the non-commercial sector of the industry. The model further revealed how various epidemiological features may influence the spread of CSF in GB, highlighting the importance of between-farm biosecurity in preventing widespread dissemination of the virus. Knowledge of factors affecting the risk of spread are key components for surveillance planning and resource allocation, and this work provides a valuable stepping stone in guiding policy on CSF surveillance and control in GB
Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology
Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding
Quantifying the Risk of Localised Animal Movement Bans for Foot-and-Mouth Disease
The maintenance of disease-free status from Foot-and-Mouth Disease is of significant socio-economic importance to countries such as the UK. The imposition of bans on the movement of susceptible livestock following the discovery of an outbreak is deemed necessary to prevent the spread of what is a highly contagious disease, but has a significant economic impact on the agricultural community in itself. Here we consider the risk of applying movement restrictions only in localised zones around outbreaks in order to help evaluate how quickly nation-wide restrictions could be lifted after notification. We show, with reference to the 2001 and 2007 UK outbreaks, that it would be practical to implement such a policy provided the basic reproduction ratio of known infected premises can be estimated. It is ultimately up to policy makers and stakeholders to determine the acceptable level of risk, involving a cost benefit analysis of the potential outcomes, but quantifying the risk of spread from different sized zones is a prerequisite for this. The approach outlined is relevant to the determination of control zones and vaccination policies and has the potential to be applied to future outbreaks of other diseases
Decelerating Spread of West Nile Virus by Percolation in a Heterogeneous Urban Landscape
Vector-borne diseases are emerging and re-emerging in urban environments throughout the world, presenting an increasing challenge to human health and a major obstacle to development. Currently, more than half of the global population is concentrated in urban environments, which are highly heterogeneous in the extent, degree, and distribution of environmental modifications. Because the prevalence of vector-borne pathogens is so closely coupled to the ecologies of vector and host species, this heterogeneity has the potential to significantly alter the dynamical systems through which pathogens propagate, and also thereby affect the epidemiological patterns of disease at multiple spatial scales. One such pattern is the speed of spread. Whereas standard models hold that pathogens spread as waves with constant or increasing speed, we hypothesized that heterogeneity in urban environments would cause decelerating travelling waves in incipient epidemics. To test this hypothesis, we analysed data on the spread of West Nile virus (WNV) in New York City (NYC), the 1999 epicentre of the North American pandemic, during annual epizootics from 2000–2008. These data show evidence of deceleration in all years studied, consistent with our hypothesis. To further explain these patterns, we developed a spatial model for vector-borne disease transmission in a heterogeneous environment. An emergent property of this model is that deceleration occurs only in the vicinity of a critical point. Geostatistical analysis suggests that NYC may be on the edge of this criticality. Together, these analyses provide the first evidence for the endogenous generation of decelerating travelling waves in an emerging infectious disease. Since the reported deceleration results from the heterogeneity of the environment through which the pathogen percolates, our findings suggest that targeting control at key sites could efficiently prevent pathogen spread to remote susceptible areas or even halt epidemics
Spatial and temporal investigations of reported movements, births and deaths of cattle and pigs in Sweden
<p>Abstract</p> <p>Background</p> <p>Livestock movements can affect the spread and control of contagious diseases and new data recording systems enable analysis of these movements. The results can be used for contingency planning, modelling of disease spread and design of disease control programs.</p> <p>Methods</p> <p>Data on the Swedish cattle and pig populations during the period July 2005 until June 2006 were obtained from databases held by the Swedish Board of Agriculture. Movements of cattle and pigs were investigated from geographical and temporal perspectives, births and deaths of cattle were investigated from a temporal perspective and the geographical distribution of holdings was also investigated.</p> <p>Results</p> <p>Most movements of cattle and pigs were to holdings within 100 km, but movements up to 1200 km occurred. Consequently, the majority of movements occurred within the same county or to adjacent counties. Approximately 54% of the cattle holdings and 45% of the pig holdings did not purchase any live animals. Seasonal variations in births and deaths of cattle were identified, with peaks in spring. Cattle movements peaked in spring and autumn. The maximum number of holdings within a 3 km radius of one holding was 45 for cattle and 23 for pigs, with large variations among counties. Missing data and reporting bias (digit preference) were detected in the data.</p> <p>Conclusion</p> <p>The databases are valuable tools in contact tracing. However since movements can be reported up to a week after the event and some data are missing they cannot replace other methods in the acute phase of an outbreak. We identified long distance transports of cattle and pigs, and these findings support an implementation of a total standstill in the country in the case of an outbreak of foot-and-mouth disease. The databases contain valuable information and improvements in data quality would make them even more useful.</p
- …