
Adaptive Management and the Value of Information:
Learning Via Intervention in Epidemiology
Katriona Shea1*, Michael J. Tildesley2, Michael C. Runge3, Christopher J. Fonnesbeck4, Matthew J. Ferrari1

1 Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 School

of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom, 3 US Geological Survey, Patuxent Wildlife Research Center, Laurel,

Maryland, United States of America, 4 Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America

Abstract

Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM),
long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that
accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach
to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as
management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use
simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on
decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention
strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale
of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be
£45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM
during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend
a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy
(which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on
an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on
uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained,
the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000
cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation
of a policy to update future management actions in response to information gained in the course of an outbreak can
change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple
models to facilitate public-health decision making and an objective basis for updating management actions in response to
improved scientific understanding.
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Introduction

Improvements in public health and disease control may arise

not only from novel technologies, but also through novel strategies

for optimal selection and application of existing technologies [1–

4]. Unfortunately, optimal decision making for management of

epidemiological systems is often hampered by considerable

uncertainty. The sources of uncertainty are myriad, but can be

broadly classified into one of two categories [5–7]. Epistemic

uncertainties are due to a lack of system or process knowledge

(biological or ecological); importantly for decision makers, such

uncertainties can be reduced through improvement of the state of

information. Aleatory uncertainty, which includes environmental

variation and other uncontrollable stochastic events, cannot

generally be reduced through learning.

The implementation of epidemiological interventions under

epistemic uncertainty usually takes place via one of two distinct

approaches. Under non-outbreak conditions, the focus is on reducing

uncertainty through research; efficacy and risks associated with novel

technologies or strategies are typically inferred from extensive clinical

trials [8]. While this experimental approach potentially allows for the

strongest inference, it is unlikely to be rapid enough to inform

dynamic decision making during a crisis. During a novel crisis, such

as a disease outbreak or the emergence of a new pathogen, decisions

are usually informed through retrospective analyses of prior crises,

trials, and interventions [3,9–12]. However, most relevant informa-

tion about the dynamics of the current crisis comes from observation

of the outbreak as it progresses [13–15]. Epidemic management

practice does not currently incorporate this real-time information into

ongoing decision making in any formal, objective way.
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Ideally, we would like to learn while we act, rather than only

before or after. In this way, we benefit from real-time feedback

from the epidemic, including the response to intervention.

Adaptive management (AM) is a structured, iterative, decision-

making approach for dynamic problems that acknowledges

uncertainty and aims to reduce this uncertainty in order to

improve outcomes. AM has a robust history in both conservation

and wildlife management [16–26], which face an analogous

challenge to manage in the face of incomplete knowledge of the

underlying system and its dynamics. AM determines an optimal

state-dependent policy, given a set of management options, a

reward (or cost) function, and one or more state dynamics models.

In the face of an epidemic, reducing epistemic uncertainty is

justified only when it leads to improved management; learning is

not valued for its own sake. AM accounts for the future

consequences of current actions by weighing the tradeoffs between

short-term learning and long-term management gains; thus

evaluation of the outcomes of interventions is an essential step.

Using an AM approach has several key advantages over existing

approaches. First, science and policy-making are fully integrated

rather than being conducted in a sequential manner; such

integration prevents loss of information and reduces the subjectivity

in decision making. The formalization of the entire process allows

decision makers to take full advantage of the considerable literature

on decision theory, with its array of tools for rigorous decision

making [27–31]. This process requires decision makers to explicitly

specify objectives and articulate the scientific uncertainties that

impede management, thereby providing important insights into the

decision problem from the outset. Uncertainty is addressed

explicitly, in a synthetic manner, rather than being ignored or

addressed in a piecemeal fashion. Thus, instead of making decisions

that are contingent on different individual model formulations and

assumptions, the AM framework suggests an optimal decision, or set

of decisions, that integrates across all models. Finally, the choice of

management actions can be updated in response to current events,

in a formal and objective way, rather than being decided a priori
and then only updated on an ad hoc basis when the weight of

evidence demands a shift in tactics, if at all.

Despite its potential to improve management, there has been no

formal application of planned learning with an explicit strategy for

updating interventions (i.e., AM) in epidemiological systems (but

see [32–36]). We here illustrate the potential utility of AM for two

epidemiological case studies: management of foot-and-mouth

disease (FMD), and vaccination strategies for measles outbreaks.

We further use these case studies to illustrate a range of possible

applications of AM in public health settings.

Methods

AM is used to make decisions in the face of uncertainty that

would otherwise impede consensus. AM involves a sequence of

steps (Table 1), including the statement of an objective (usually

encapsulated in a reward [or cost] function), of possible

management options, and of any uncertainties that hinder effective

decision making (usually formulated as alternative state dynamic

models). All possible model and action combinations are then

evaluated in terms of their ability to achieve the stated objective. If

all models agree about the best management action, despite

disagreeing about the underlying uncertainty, then no further

analysis is needed, and the decision can be made. However, if

there is disagreement among models about the best action to take,

it is possible to quantify how much learning about the ‘‘correct’’

model can be expected to improve outcomes. If the value of

learning is sufficiently high, then an initial action can be chosen

(on the basis of the highest expected benefit [or lowest expected

cost] in light of model uncertainty), but AM plans for this action to

be changed should information gained during early interventions

reduce our uncertainty about the best model.

The value of AM in selecting an intervention can be evaluated

using the expected value of perfect information (EVPI), which

estimates the value to the decision maker of resolving one or more

uncertainties prior to the implementation of specific decisions. EVPI

was originally developed in economics [30], and has since been

applied in ecological contexts [30,37,38] and in the development

and evaluation of clinical trials [39–41] to identify key sources of

uncertainty that limit management success and direct the allocation

of research effort to most efficiently improve management

outcomes. EVPI reflects a theoretical maximum achievable benefit

[42]. Though managers often passively update interventions as new

information comes to light, the potential to recover the EVPI is

necessarily limited by the lack of a framework for real-time learning.

This explicit structured decision-making framework is integral to

AM, in which learning is valued insofar as it helps to maximize the

proportion of the EVPI attained through informed interventions.

The EVPI calculates the objective value gained by learning

before making a decision. It involves a comparison of costs (and/or

benefits) assuming perfect information with costs (and/or benefits)

assuming the current level of information. Understanding the

value of perfect information can meaningfully quantify the value of

undertaking an AM program. Formally, EVPI is the difference

between the average of optimum values conditional on each model

and the optimum of an average of values, where the expectation is

taken over the weights associated with the alternative models:

EVPI~
X

k

pk( opt
i

Cik){ opt
i

X

k

pkCik ð1Þ

Here, Cik is the cost associated with action i under model k, pk is

the weight associated with model k (subject to the constraint thatP
k

pk~1), and opt
i

indicates the optimum (in our case, the

minimum) over all candidate actions (also see Table 2).

Author Summary

If the response to a disease outbreak is poorly managed,
lives may be lost and money wasted unnecessarily. Lack of
knowledge about the disease dynamics, and about the
effects of our control strategies on those dynamics, means
that it is difficult to do the best job possible managing such
epidemiological problems. Here, we present an adaptive
management approach that allows researchers to use
knowledge gained during an outbreak to update ongoing
interventions, thereby translating scientific discovery into
improved policy. We explore the implications of adaptive
management for foot-and-mouth disease outbreaks in
livestock and for measles vaccination strategies in humans.
In these two particular cases, planning to update manage-
ment actions leads to the recommendation of a less
aggressive initial approach than if changes in management
are not anticipated. We demonstrate expected savings of up
to £20 million in terms of lower livestock losses to culling in
a foot-and-mouth outbreak based on the dynamics
observed in the UK in 2001. Similarly, up to 10,000 cases
could have been averted in a measles outbreak like the one
observed in Malawi in 2010. Adaptive management allows
real-time improvement of our understanding, and hence of
management efforts, with potentially significant positive
financial and health benefits.

Adaptive Management for Outbreak Response
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We proceed through the AM process for two case studies, using

each to illustrate different aspects of value in a range of

circumstances. We describe in detail both the set-up (i.e., pre-

outbreak) and implementation phases of an AM approach (Table 1)

to FMD outbreak response, and quantify the value of a formalized

strategy to update management actions as real-time surveillance

improves discrimination among models. We illustrate how struc-

tural uncertainty (uncertainty about the functional form or

parameterization of models) can be characterized by a set of

discrete competing models; specifically, we quantify the uncertainty

about the spatial scale of FMD transmission. We further quantify

the value of a formally adaptive approach to management as the

proportion of the EVPI that could be attained and demonstrate that

a formal plan to reduce uncertainty can affect the optimal initial

intervention. We also explore policy robustness of management

recommendations (for example, to scenarios of greater than

specified severity, or to very different objectives). We then more

briefly sketch the AM approach for measles vaccination planning,

using this case study to illustrate the use of the EVPI framework to

structure planning when decisions are limited by logistical

uncertainties and constraints. This case study allows us to explore

a continuum of uncertainty about management capabilities in the

field. We further use this case study to explore how the choice of

initial action is affected by the time required to monitor

management consequences and implement more informed actions.

Results

Case Study I: Adaptive Management of Foot-and-Mouth
Disease

The problem. In 2001 a large outbreak of FMD (Aphtae
epizooticae), a highly contagious viral disease of livestock, caused

Table 1. Steps in an adaptive management framework.

Steps of AM Comments

Set-up phase

A. Specify management objective for the problem in consultation
with stakeholders

Intervention goals may be to minimize economic loss, mortality or number of
cases, or the duration of an epidemic

B. Identify possible management actions

C. Construct alternative models to encapsulate key uncertainties,
as well as what is known/agreed

Failure to incorporate key uncertainties can result in ineffective decisions,
and hence, unsatisfied objectives

D. Develop a monitoring plan Decide what, how, and how much to measure

E. Evaluate expected consequences of interventions under
alternative models

Forward projection of the alternative models for each of the management
actions to generate testable predictions about system outcomes

Implementation phase

F. Decide management action(s) based on model outcomes
with respect to achieving the management objective

Probing actions to accelerate learning are only favored if they improve
management outcomes in the long-term

G. Implement management and monitor outcomes

H. Assessment of empirical observations against model predictions
provides evidence to reduce uncertainty and update weights on alternative models

Inference to reassess model credibility and updating of weights to improve
management in light of new information

Initial movement through the set-up phase is followed by rapid iterative learning in the implementation phase (feedback loop from H to F). An outer feedback loop
(from H to A, B, or C) can also arise, with occasional reconsideration of steps in the set-up phase, as necessary (for example, if preliminary management efforts motivate
alterations or refinements to objectives, if new stakeholders become involved, if new uncertainties become apparent, or if new management options arise). This slow-
rapid iterative learning process is called double-loop learning [21]. The set-up phase can be conducted before an anticipated problem arises (e.g., planning for a
possible future outbreak, as discussed for FMD in this paper), while the implementation phase can only occur once an outbreak has started.
doi:10.1371/journal.pbio.1001970.t001

Table 2. The costs for the four strategies (IP only [IP], IP+DC [DC], IP+DC+CP [CP], IP+DC+3 km ring culling [RC], when the FMD
model is simulated with the dispersal kernels K1, K2, and K3.

Models and Cases Kernel Management Actions

IP DC CP RC Best

Models K1 (thin) 84.5 55.1a 81.7 259.8b 55.1

K2 (UK) 5,129.3 1,901.3 1,162.2 2,537.7 1,162.2

K3 (fat) 284.1 221.1 221.1 381.7 221.1

Weighted average costs

Case 1 UK kernel belief (0.25, 0.5, 0.25) 2,656.8 1,019.7 696.0 1,429.2 650.1

Case 2 Equal weighting (0.33,0.33,0.33) 1,832.6 725.8 540.7 1,059.7 479.5

The costs shown are in millions of £. Weighted average costs associated with each management strategy for two different distributions of kernel beliefs (case 1, a
stronger belief that the 2001 UK kernel will apply to a novel outbreak; case 2, an equal weighting on each model) are also shown.
aBold numbers highlight the best (lowest cost) outcomes possible.
bItalic numbers are the worst outcomes possible.
doi:10.1371/journal.pbio.1001970.t002
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major disruption to British agriculture and tourism. There were

2,026 confirmed cases in Great Britain (and four in Northern

Ireland); around 7 million livestock (primarily cattle and sheep)

were culled [43]. The total epidemic cost was estimated at around

£8 billion (US$12.5 billion). The outbreak was characterized by

significant, extended, and controversial scientific and political

debate about the most appropriate management strategy for the

disease; stakeholders included farmers, others in the livestock

industry, scientists, and politicians. Passive learning and ad hoc
changes in management actions occurred during the outbreak, but

there was no a priori plan to actively include improved

understanding of the system dynamics in later decision making.

Scientific opinions were encapsulated in three competing models

[13,14,44], each suggesting preferred strategies to control the

epidemic. Here we re-evaluate the problem in a decision-analytical

context for alternative versions of one of these models, the Keeling

and colleagues [13] model (details of the model are given in Text

S1A). We use an AM framework (Table 1) to first outline the set-

up phase (Table 1, steps A–E, described in detail below) of the

decision process to assess the value of resolving uncertainty about

the spatial scale of transmission. We then demonstrate the value of

learning in a two-stage AM approach to FMD management,

which could be implemented in the event of an actual outbreak.

Step A: specify management objective. The primary

objective of outbreak management in 2001 was to minimize the

number of farms or livestock lost, either through the slaughter of

animals on infected premises, or control culling of livestock on

farms without reported infection in an effort to control further

spread of disease [4,13,14]. For the purpose of this work, the

objective is to minimize the cost of livestock lost through disease

mortality and culling:

C~1000 Ncattlez100 Nsheep

where C is the overall cost in pounds sterling, and Ncattle and Nsheep

represent the number of cattle and sheep lost to the disease or

culled as part of the control strategy. These costs are based upon

estimates of market prices of cattle and sheep in the UK from

2001. However, the choice of objective function is critically

important: we also consider alternative objectives, below and in

Text S1E. As different objectives can significantly change

management recommendations, specification of the fundamental

objective of management is a nontrivial process, ideally involving

input from all stakeholders (Table 1).

Step B: identify possible management actions. We

consider four nested management actions (Figure 1A): (1) culling

of livestock on infected premises (farms with confirmed cases of

disease) only (IP); (2) pre-emptive culling of dangerous contacts

(defined either as premises in which animals had been in direct

contact with infected livestock or as premises that had been

exposed to infection in any other way) as well as infected premises

culling (DC); (3) culling of livestock on infected premises,

dangerous contacts, and contiguous premises (farms sharing a

border with an IP) (CP); (4) ring culling in a 3 km radius of infected

premises in addition to infected premises and dangerous contact

culling (RC).

Step C: construct alternative models to encapsulate

uncertainty. The FMD model has 188,496 farms (using data

from the June 2000 agricultural census), with an infection process

based on demographic characteristics of farms and the distance

between farms (Text S1A). We encapsulate the uncertainty in the

risk of transmission between farms using three dispersal kernel

models, ordered by increasing mean dispersal distance (Figure 1B):

a thin, steep kernel (K1); the current estimate from past experience

in the UK (K2); and a fat, shallow kernel (K3); we assume the

same total force of infection for each kernel. A continuum of

model parameterizations that span the possible range could easily

be explored, but we focus on these three representative models for

clarity. The UK kernel (K2) was estimated using contact tracing

from the 2001 epidemic after the introduction of movement

restrictions [13]. In the event of future outbreaks of FMD in the

UK or elsewhere, the shape of this distance-dependent transmis-

sion kernel will be a key source of epistemic uncertainty.

Step D: develop a monitoring plan. To rapidly discrimi-

nate among competing models, we require information on the key

inputs for the cost function (the numbers of cattle and sheep

culled), as well as on the location and detection date of infected

farms, and contact tracing.

Step E: evaluate expected consequences under alternative

models using the expected value of perfect

information. We assess the four management options against

the three alternative kernels in an EVPI analysis of the FMD

model [13], using two different kernel weightings (Table 2): (case

Figure 1. Candidate management actions and alternative
dispersal models for the FMD case study. (A) Schematic
representing the four possible nested management actions (IP only
[IP], IP+DC [DC], IP+DC+CP [CP], IP+DC+3 km ring culling [RC]) for FMD
management (corresponding to Table 1, step B). (B) Three alternative
dispersal kernel models for FMD in the UK, representing a continuum of
possible dispersal kernels (corresponding to Table 1, step C).
doi:10.1371/journal.pbio.1001970.g001
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1) higher weight on K2, favoring the belief that a novel outbreak in

the UK would follow the 2001 dynamics, and (case 2) equal weight

on all kernels, reflecting the uncertainty associated with an

outbreak under alternative movement restrictions from those

imposed in 2001, or elsewhere (e.g., US).

Fixed strategies and the expected value of perfect

information. Conditional on kernels K1 or K3, a DC strategy

over the full epidemic minimizes the expected costs relative to

other fixed strategies (Table 2). Under kernel K1, the narrow

dispersal kernel contains the epidemic in a small geographic

region, while under K3 geographic spread is significant, but the

small height of the kernel results in relatively few cases in high

density regions. The UK (K2) kernel’s combination of significant

local and long distance spread results in higher costs regardless of

the chosen intervention. Conditional on the UK kernel, the best

fixed strategy is CP culling (Table 2). Across the three models, for

case 1 and case 2, the CP strategy gives the lowest model-weighted

projected cost (£696.0 million and £540.7 million for the two

cases, respectively) (Table 2; see also Text S1B). Thus, while the

DC strategy is better for two of the three models, the higher costs

associated with K2 mean that the CP strategy would result in the

lowest expected cost in light of model uncertainty.

Despite IP culling being the least expensive strategy to

implement of the four considered here, it is insufficient to curtail

FMD spread, even with the narrowest dispersal model assumed, so

overall incurs higher costs than DC under all models (hence, IP is

‘‘dominated’’ by DC). RC is also never the best solution, and is the

worst strategy for K1 and K3.

If we could resolve uncertainty prior to committing to an action,

we would choose the best action under the true model.

Conditional on the a priori model weights, the expected costs of

the best strategy are £650.1 million and £479.5 million for case 1

and 2, respectively (‘‘Best’’ column in Table 2). For a novel

outbreak for which prior belief in the transmission dynamics is

weighted in favor of behavior consistent with the 2001 UK

outbreak (case 1), the EVPI is £45.9 million (£696.0 million–

£650.1 million). Thus, the expected cost of a future outbreak

could be reduced by £45.9 million (6.6%), relative to the cost

incurred by choosing the action recommended by the a priori
weights, if the uncertainty could be fully resolved before a

management action is decided. For a novel outbreak for which

prior belief in the transmission dynamics does not support one

kernel model more than another (case 2), EVPI is £61.2 million

( = 540.7 million–479.5 million), which is an expected 11.3% cost

reduction. In practice, uncertainty in these alternative kernels is

unlikely to be fully resolved prior to a novel outbreak (Figure 2).

Thus, the best fixed strategy will be conditional on the remaining

weights (Figure 3A), and the resultant EVPI (Figure 3B) quantifies

the economic incentive for implementing an AM plan.

Realizing the expected value of perfect information: a

two-stage adaptive management approach. Detection of a

new outbreak would trigger the iterative implementation phase

(Table 1, steps F–H). For heuristic and practical purposes, we here

consider a two-stage management strategy (Figure 2), allowing for

control tactics to be updated at a single point one month into a

new epidemic, assuming that monitoring during the first month

identifies the true dispersal kernel model. We also assume that

there is no cost to changing management actions. With one

decision point, the four culling options give rise to 16 possible

combined strategies, each composed of one (though possibly

identical) option in each stage (Text S1C).

For case 1 (2001 UK kernel biased) the best stage 1 tactic in an

adaptive strategy is CP, and the expected costs are £695.3 million.

Given that the best fixed strategy is CP (Figure 3A) and the best

adaptive strategy is CP in the first stage (Figure 3C) the potential

gain of an adaptive approach is only 1.7% of the EVPI (£0.78

million). The bulk of the £45.9 million EVPI can only be regained

if uncertainty is resolved earlier in the epidemic.

If a priori weights are equal for all models (case 2), the best fixed

strategy is CP (Figure 3A) but the best adaptive strategy is DC

culling in the first stage (Figure 3C) and the potential gain of an

adaptive approach is £20.1 million (32.85% of the EVPI). Thus,

for a novel outbreak, which may not necessarily progress similarly

to the 2001 UK outbreak, the potential gains from an adaptive

approach are significant.

Given uncertainty in the spatial scale of transmission, the

optimal adaptive strategy and the potential cost reductions arising

from an adaptive approach depend on the initial weights placed on

the different transmission kernels (Figure 3C and 3D). Increased

initial weight on K2, with its higher associated costs, means that

the model-weighted expectation of the CP tactic would be favored.

EVPI peaks at low a priori weight on the UK (K2) kernel

(assuming the remaining weight is evenly split between K1 and

K3) (Figure 3D); in general, the more certain we are about any

individual model, the less the expected value of potential learning.

The amount of EVPI that can be recovered by an adaptive

strategy (Figure 3D, shaded region) drops quickly, from .80%

when the weight on the UK kernel is less than 0.13 to ,2% if the

weight on the UK kerned is .0.41 (Figure 3D). Such analyses can

be used to determine whether an adaptive approach is likely to be

justified relative to a priori uncertainty in the outbreak scenarios

and the costs associated with monitoring, evaluation and

adaptation.

The expected value formulation implies that the goal of

management is to maximize the average benefit (or minimize

average costs). However, this objective does not explicitly account

for variation in outbreak outcomes; the distribution of potential

Figure 2. Schematic of the two phases of the AM process
(Table 1). Left of the dashed line indicates model projections under
the phase 1 management action prior to the first opportunity to update
management—colored shading indicates projections of competing
models. The red line indicates the observed time series of the epidemic
up to the decision point. Right of the dashed line indicates new
projections from each model, conditional on the observed epidemic up
to the update, from which to assess the alternative management
actions.
doi:10.1371/journal.pbio.1001970.g002
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outcomes may be strongly skewed for epidemics, and alternative

expressions of the objective might aim to minimize the risk of

catastrophic events such as particularly extreme outcomes. It is

straightforward to evaluate management alternatives relative to a

manager’s risk tolerance (i.e., risk prone or risk averse), by stating

an objective that maximizes the probability that the outcome is less

than some threshold (Figure 4A). Management actions can then

be assessed with respect to their ‘‘robustness’’ to these different

statements of cost objective (to minimize average costs versus

minimization of chance of extreme costs). It is also possible to

conduct an examination of very different alternative objectives.

For example, minimization of FMD outbreak duration may be

more important than minimization of local costs for countries

involved in significant international trade (Figure 4B). For both

objectives, CP culling either maximizes, or results in the same,

probability of remaining below the threshold cost or duration for

the majority of possible thresholds, but if threshold duration is low,

then the more aggressive RC alternative is most likely to stay

below the threshold (Figure 4B), and the relative ranking of the

suboptimal RC and DC actions switches for these two objectives

Figure 3. Analysis of the foot-and-mouth case study. (A) The optimal static culling intervention (red, DC; blue, CP) for FMD as a function of the
initial weights on the three kernel models. The axes indicate weights on each of the three kernel models and internal points correspond to
combinations of weights (summing to 1) on each model; the inset indicates the direction of increasing weight on each model (e.g., the transition
from the left axis to the bottom right apex indicates increasing weight on K2 with equal weight on K1 and K3); dots indicate the weight combinations
corresponding to case 1 and case 2. (B) The EVPI as a function of the initial weights on the three kernel models; axes and dots are as in (A). (C) The
optimal first-stage culling intervention (red, DC; blue, CP) for the two-stage adaptive strategy as a function of the initial weights on the three kernel
models; axes and dots are as in (A). (D) The EVPI (red line) as a function of the weight on the UK kernel, assuming equal weights on the other two
models. The grey shading indicates the amount of the EVPI that is expected to be recovered under an adaptive strategy.
doi:10.1371/journal.pbio.1001970.g003
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(Figure 4A versus 4B). We further describe analyses of alternative

objectives in Text S1E.

Case Study II: Adaptive Management for Measles
Outbreaks

The problem. Measles is the leading cause of vaccine-

preventable childhood mortality worldwide [45]. In 2010,

following years of successful control, an outbreak of measles

spread throughout Malawi resulting in .135,000 new cases [46].

The Ministry of Health initially implemented a vaccination

campaign targeting children aged 6 months to 5 years. After

early surveillance indicated that the outbreak was affecting a much

broader age range than anticipated (cases up to 25 years of age)

[46] the Ministry of Health collaborated with Médecins Sans

Frontières to expand vaccination campaigns in eight districts to

target children aged from 6 months to 15 years. The age-

distribution of the susceptible population is a key uncertainty

limiting the design of optimal interventions. For non-selective

campaigns, a larger age-range should increase the chances of

reaching non-immune individuals; however, it should also result in

more resources spent on vaccinating those already immune and

necessarily increases the time to implement a campaign. The delay

in the completion of vaccination could limit the potential impact of

a campaign and the ability to rapidly respond elsewhere if an

outbreak spreads [11].

Measles set-up phase. Here we consider a simplified

example of deciding the age-target for a measles vaccination

campaign with the objective (Table 1A) of minimizing the total

number of cases over the full duration of the outbreak. The three

possible management actions (Table 1B) target all children from 6

months to 5 years, 6 months to 10 years, or 6 months to 15 years of

age.

We assume a deterministic SEIR-type, age-structured epidemic

model (see Text S1D for model details) and calculate the number

of measles cases averted (i.e., cases assuming no campaign minus

cases with a campaign) by a reactive vaccination campaign that

aims for 90% coverage in the target age classes. Unlike the FMD

example above, here we consider that the logistical capacity to

implement a vaccination campaign is unknown and conduct an a
priori evaluation of the potential benefits of an adaptive approach.

The duration of a campaign is determined as the size of the target

population divided by the daily vaccination rate. It is unlikely that

the vaccine distribution rate, which depends on both clinic

capacity and visitation rate, will be known a priori. We consider

uncertainty about vaccination rates over a continuous range from

10,000 to 100,000 doses per day. We represent uncertainty in the

susceptible age distribution, analogous to the setting in Malawi in

2010, as three alternate models (Table 1C) of the susceptible age

distribution (Figure 5; see the Text S1D for details): an exponen-

tial age distribution with 90% of susceptibles less than 5 years, 10

years, or 15 years (Figure 5A). We assume that all three age

distributions have equal a priori weight. In an adaptive approach,

the monitoring plan (Table 1D) would facilitate resolution of this

uncertainty through case-based surveillance or targeted serological

surveys. We next evaluate the expected consequence of interven-

tions (Table 1E); detection of a real outbreak would then trigger

the iterative implementation phase (Table 1F–H).

To explore what might happen during a real outbreak, we

examine two different scenarios pertaining to the logistical

capacity to implement a vaccination campaign. We first assume

a campaign conducted on day 75 of the outbreak and calculate the

optimal fixed age-target and the expected value of resolving

uncertainty about the susceptible age distribution (EVPI), depen-

dent on the daily vaccination rate. We then assume a fixed daily

vaccination rate of 30,000 doses per day (approximately that

achieved in Malawi in 2010) and calculate the optimal initial

strategy assuming that age targets are updated following a delay of

T days (T = 15, 30, 60, 180, 250).

In the face of uncertainty about the susceptible age distribution

for measles, the optimal initial response depends both on the

logistical capacity (i.e., the daily vaccination rate) and the time

required to assess and implement an updated age target. When

vaccination rates are low the best fixed strategy is to vaccinate only

,5 years, and the potential to improve outcomes by learning

(EVPI) is low because broader campaigns (up to 10 years or 15

Figure 4. The probability of FMD epidemic outcomes below a
stated threshold for the four nested alternative management
tactics. (A) Outcomes for the management objective to minimize total
epidemic cost due to livestock loss assuming equal weights on the
three kernel models. (B) Outcomes for the management objective to
minimize the duration of management activities, again assuming equal
weights on the three kernel models. The x-axis indicates the cost (in
millions of pounds) or duration (days) threshold that managers would
like to stay below. The y-axis indicates the probability, averaged across
all three kernel models, of outcomes below the threshold for each
management tactic (solid lines).
doi:10.1371/journal.pbio.1001970.g004
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years) would be prohibitively slow even if there were many older

susceptible individuals (Figure 5B). The expected benefit of

resolving uncertainty about the age distribution of susceptibles

(EVPI) is highest (,10,000 fewer cases, or a 12% case reduction

relative to the best naı̈ve strategy which results in ,84,000 cases)

at intermediate daily vaccination rates (,35,000 doses per day),

since switching to a broader age target, if prescribed, would not

incur prohibitive delays in campaign completion (Figure 5B). At

high daily vaccination rates the duration of the campaign is less

constrained by logistical capacity; thus wider age targets are

recommended and the potential to improve upon the fixed

strategy by learning declines (Figure 5B). Thus, while an adaptive

approach always allows actions to be tailored to the current

setting, the benefit of an adaptive strategy is constrained by the

logistical capacity to implement the recommended changes.

When the daily vaccination rate is fixed, the time required to

assess and implement more informed actions affects the choice of

initial action. If the campaign age target can be rapidly updated

(within 90 days) the best initial action is to target children ,5

years, regardless of the initial weight on each model (Figure 5C).

The ability to update actions limits the potential costs of the

smaller initial age target being incorrect. The EVPI associated

with an adaptive strategy is small when updates are implemented

within 15–60 days (6%–10% reduction in cases) because the lack

of information only impacts decisions for a short period. However,

an adaptive strategy updated between days 15–60 can realize

90%–100% of the EVPI and a reduction of burden by 12,000 to

19,000 cases relative to a static strategy that applies a single age

target throughout. As the time required to update the initial action

increases, then the more conservative strategy of vaccinating

children ,10 years dominates for all possible model weightings

(Figure 5C).

Discussion

The disparate predictions of competing models are a barrier to

the development of policy under traditional (non-adaptive)

management approaches [47,48]. Rather than conditioning on a

single ‘‘best’’ model, AM incorporates and systematically seeks to

reduce the scientific uncertainty that impedes success, by

integrating over models that encapsulate all of the articulated

uncertainties to produce an inclusive decision set. Our simulta-

neous consideration of three alternative parameterizations of the

dispersal kernel of the Keeling and colleagues [13] model and all

possible interventions illustrates the expected value of resolving

uncertainty about the dispersal kernels in an FMD outbreak,

Figure 5. Analysis of the measles vaccination case study. (A) The number of susceptible individuals in each age class for the three alternative
age distribution models for measles. (B) The EVPI as a function of the daily vaccination rate, colors indicate the optimal intervention (blue, vaccinate
0–5 years; green, vaccinate 0–10 years; yellow, vaccinate 0–15 years) for each vaccination rate. (C) The optimal vaccination target age, as a function of
the weight on each of the three models of the susceptible population (axes on ternary plots) and the time, in days, at which the vaccination target
can be changed to the optimal target conditional on the true susceptible age distribution (colors are as in panel B).
doi:10.1371/journal.pbio.1001970.g005
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possibly saving millions of pounds in lost livestock. Passive learning

and ad hoc adaptation did occur during the 2001 outbreak (the

initial DC strategy was altered to CP within about a month); thus

there would be no additional logistical burden to an AM

approach. Our results show that an AM approach could be

employed to realize a good portion (32.85% for case 2) of the

EVPI, and provides an objective justification for an initially less-

severe culling regime by minimizing expected costs over the full

epidemic, given the option to change management actions in

response to the observed progression of the outbreak. As seen in

the UK in 2001, FMD outbreaks can potentially cause significant

economic and environmental damage, and there is substantial

concern about the likelihood and potential impact of future FMD

disease outbreaks, both in the UK and the USA. Using an AM

approach could significantly reduce the burden of such an

outbreak.

The AM approach to the measles outbreak response case study

illustrates how management decisions can be framed in the context

of both discrete and continuous uncertainty, here with regard to

the population at risk and logistical capacity. In particular, our

simulations show that the cost of uncertainty about the at-risk

population is critically dependent on the logistical capacity to

implement the optimal vaccination target. When daily vaccination

rate is highly constrained, the optimal strategy is to conduct the

smallest, and thus fastest, campaign; however, it is in this regime

where the value of information is greatest—potentially reducing

case burden by 12% (,10,000 additional cases averted) if

campaign targets can be updated based on the true susceptible

population. Further, we illustrate the inherent trade-off between

the benefit of updating vaccination targets conditional on

assessment of the true susceptible population and the time

required to make such an assessment. If vaccination targets can

be rapidly adjusted to the outbreak setting at hand, then the

optimal strategy is to implement the smallest, fastest initial age

target—with the potential to realize nearly 100% of EVPI (which

corresponds to 40%–60% fewer cases relative to the best static age

target) if updated within 30 days. However, if the initial target

cannot be updated (or only updated after a very long period of

surveillance), then the optimal recommendation is to choose a

broader age target, which averages risk over the alternative

distributions of susceptible individuals.

The goal of AM is not to replace decision makers or to automate

decision making. Modeling plays an important role in developing a

mechanistic understanding of the processes that give rise to

observed dynamics and that mediate the costs and benefits of

management actions. With an improved mechanistic understand-

ing of a system, inherent trade-offs in decision making can be

understood and management can be optimized, in the classical

sense of optimal control, relative to a given model. AM plays a role

in the common situation where a mechanistic understanding

cannot be resolved a priori; thus managers must choose among the

potentially disparate recommendations of alternative models or

parameterizations. In this setting, EVPI is a measure of the degree

of consistency between model predictions with respect to

management actions. Interpreting EVPI in the context of the full

decision-space highlights the dependence of the recommended

actions on the underlying models and focuses attention on the

differences among models in terms of their recommendations (the

management action to best achieve the objective) rather than in

terms of the projections of the system states.

AM improves management outcomes in three ways. First, the

outcome of management is quantified in terms of an objective

function that can be expressed in terms of both desired biological

and economic outcomes. Second, the potential benefits of future

improvements to management are balanced against the short-term

costs of learning [37] and the capacity to enact updated

interventions. Third, the expected benefit of initial interventions

is calculated in light of the ability to implement future changes;

thus there is no a priori presumption of a ‘‘best’’ intervention, and

management may change through time. Managers often ‘‘adapt’’

their actions on an ad hoc basis, but AM formalizes this process by

assessing all models and management options simultaneously.

Our case studies demonstrate that AM has the potential to

improve management outcomes for a variety of epidemiological

systems. The FMD case study showcases the value of AM for

improving management interventions as information accrues,

rather than relying only on prior knowledge, and anticipates the

value of information in choosing early intervention strategies, here

via an EVPI analysis. In this example, a more moderate initial

culling intervention is optimal for a broader range of parameter

uncertainty when the ability to change is included in the analysis.

The use of AM in the event of future FMD outbreaks, in the UK,

the USA, or elsewhere, would likely also realize significant socio-

economic savings. In the measles example, we illustrate that while

the expected cost of an adaptive strategy is always less than that of

a single fixed strategy, optimal vaccine targets and the additional

benefit of an adaptive approach depend both on uncertainty about

the age-distribution of the at-risk population and on the logistical

constraints of implementing improved interventions. These

examples, taken together, illustrate that AM explicitly values

enhanced scientific understanding in terms of its capacity to

improve management outcomes through selection of appropriate

interventions.

AM is flexible and can easily accommodate alternative

objectives, additional management options, other models, and

multiple sources of uncertainty. For example, other costs, such as

damage to the agricultural or tourism industries, could also be

included in the FMD objective cost function. Similarly, entirely

different objectives, for example minimization of epidemic

duration in FMD, to reduce the time taken to return to disease-

free status for trade purposes [49] are straightforward to consider

(Figure 4; Text S1E). If new management options or models arise,

they effectively trigger a return to the set-up phase of AM. For

example, vaccination (with its own inherent uncertainties about

how, and how well, the vaccine performs) was not implemented

during the 2001 FMD epidemic, but is now part of the UK’s

contingency plan in the event of future outbreaks [4]. Similarly, in

future outbreaks under markedly different situations (e.g., in the

event of an outbreak in the USA) transmission uncertainty would be

even more extreme, and would likely require the assessment of

additional kernels (e.g., farm-to-farm contact networks), models, or

management strategies [49]. Many management situations also

have multidimensional uncertainties. For example, in our analysis of

measles we independently examined daily vaccination rate and the

rate at which age targets are updated. It is straightforward to weigh

the relative value of reducing uncertainty in each of these different

unknowns [42,50]. AM can frame all of these novel aspects. Relative

to the analyses presented here, these additional complexities can be

readily incorporated by modifying the fundamental objective, or by

expanding the value of information analyses (Table 2; Text S1B,

S1C, S1E) to include the additional model and intervention

combinations (and associated model weights).

Applications of AM are not limited to disease outbreaks. AM

also has the potential to improve other disease management

outcomes, such as routine and supplemental vaccination strategies,

infectious disease surveillance, and clinical trials. AM can improve

management outcomes in situations where management actions

are taken repeatedly in time or space, system dynamics are
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influenced by management actions or by changing environmental

conditions, and there is uncertainty (or disagreement) about the

expected impacts of management. The potential for improvement

may be limited by monitoring capacity or by the logistical or

political capacity to enact changes. Nevertheless, even if a static

intervention is optimal or the value of information is low, the AM

approach provides a framework for incorporating predictive

modeling into decision making that embraces scientific uncertain-

ty. Thus, AM may yield significant rewards in terms of money or

lives saved.

Supporting Information

Figure S1 The probability of epidemic outcomes below
a stated threshold for four alternative management
tactics. Left panels give outcomes for the management objective

to minimize total epidemic cost due to livestock loss, the right

panels give outcomes for the management objective to minimize

the duration of management activities. The x-axis indicates the

cost (in millions of £) or duration (days) threshold that managers

would like to stay below. The y-axis indicates the probability,

averaged across all three kernel models, of outcomes below the

threshold for each management tactic (solid lines). Panels from top

to bottom indicate increasing weight on the 2001 UK kernel, with

equal remaining weight on kernels 1 and 3.

(TIF)

Figure S2 Ternary plots of the optimal static strategies
assuming different utility functions. The top row indicates

the optimal static strategy for the objective of minimizing total

outbreak cost due to livestock loss. The bottom row indicates the

optimal static strategy for the objective of minimizing outbreak

duration. Each ternary figure indicates the optimal static culling

alternative (colors) for different weightings on the three kernel

models (see Figure 3 in the main text for description of ternary

plots). Panels from right to left indicate utility functions (insets) that

are increasingly risk-seeking.

(TIF)

Figure S3 Ternary plots of the optimal static strategies
assuming different utility functions. The top row indicates

the optimal static strategy for the objective of minimizing total outbreak

cost due to livestock loss. The bottom row indicates the optimal static

strategy for the objective of minimizing outbreak duration. Each

ternary figure indicates the optimal static culling alternative (colors) for

different weightings on the three kernel models (see Figure 3 in the

main text for description of ternary plots). Panels from left to right

indicate utility functions (insets) that are increasingly risk-averse.

(TIF)

Table S1 Cost projections (in millions of £) for each
two-stage intervention strategy for each kernel model.
(DOCX)

Table S2 Expected cost projections (in millions of £) of
each first-stage intervention, conditional on the assump-
tion that model uncertainty is resolved after 1 month
and the second-stage action is taken as that intervention
that minimizes costs under the true model.

(DOCX)

Table S3 Parameterization of the age distribution of
susceptibles for three age distribution models.
(DOCX)

Text S1 Additional methods and model descriptions. (A)

Description of the Warwick FMD model. (B) Interpretation of the

EVPI table. (C) Expected value of an adaptive strategy. (D)

Description of the measles outbreak model. (E) Alternate objective

formulations to reflect risk tolerance for FMD.

(DOCX)

Acknowledgments

We thank Ottar Bjørnstad, Andrew Flack, Dylan George, Bryan Grenfell,

Scott Isard, Petra Klepac, and the Shea lab for comments.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: KS MT MR

CF MF. Performed the experiments: KS MT MR CF MF. Analyzed the

data: KS MT MR CF MF. Contributed reagents/materials/analysis tools:

KS MT MR CF MF. Wrote the paper: KS MT MR CF MF.

References

1. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, et al. (2006)

Strategies for mitigating an influenza pandemic. Nature 442: 448–452.

2. Metcalf CJE, Klepac P, Ferrari M, Grais RF, Djibo A, et al. (2011) Modelling

the first dose of measles vaccination: the role of maternal immunity,

demographic factors, and delivery systems. Epidemiol Infect 139: 265–

274.

3. Tildesley MJ, Bessell PR, Keeling MJ, Woolhouse MEJ (2009) The role of pre-

emptive culling in the control of foot-and-mouth disease. Proc Roy Soc B 276:

3239–3248.

4. Tildesley MJ, Savill NJ, Shaw DJ, Deardon R, Brooks SP, et al. (2006) Optimal

reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature

440: 83–86.

5. Regan HM, Colyvan M, Burgman MA (2002) A taxonomy and treatment of

uncertainty for ecology and conservation biology. Ecol Appl 12: 618–628.
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