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Abstract

The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to
make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some
countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of
livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect,
aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and
investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an
outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations,
model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land
use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring
culling strategies were obtained. This suggests that a geographic information approach may be useful where individual
farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This
method can also be used for contingency planning in collaboration with policy makers to determine preferred control
strategies in the event of a future outbreak of infectious disease in livestock.
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Introduction

Mathematical models of infectious diseases are increasingly used

to inform policy decisions. The advantages of such models are that

multiple control options can be rapidly tested and compared,

without the risks and costs associated with field experiments.

However, for such models to be practically useful tools detailed

data (both in terms of populations and epidemiology) are required.

In many countries around the world, detailed demographic data

on livestock farms, wildlife populations or vector densities are

generally lacking. However, remotely sensed information (such as

satellite images and land-use maps) provides the potential to

generate these data or produce surrogate populations.

In early 2001, an outbreak of foot-and-mouth disease (FMD)

occurred in the United Kingdom for the first time in over thirty

years [1]. A nationwide ban on animal movements was introduced

for the duration of the epidemic to minimise spread of disease and

mathematical modelers were consulted to provide policy advice to

help control the epidemic [2–3]. The nationwide movement ban

occurred in late February 2001 four days after the first case was

reported. Whilst a movement ban reduces the risk of large scale

disease spread, it does not prevent spread from occurring, as the

virus can be spread between farms via contaminated machinery,

between infected livestock over farm boundaries, contaminated

milk tankers, on people’s shoes etc. In 2001, nearly 2000 farms

were infected after the movement ban was introduced and the

epidemic lasted over 7 months.

The ability of mathematical models to make accurate predic-

tions in 2001 was facilitated by the availability of highly resolved

demographic and infection data. In the UK, an annual livestock

census records the location and species composition of all livestock

farms in the UK (though these livestock quantities are subject to

some variations throughout the year). During 2001, the Disease

Control System (DCS) database recorded the location, reporting

and cull date of all infected farms, as well as detailed information

regarding premises whose livestock were culled as part of the

disease control effort [1,4].

These detailed databases have allowed for retrospective

statistical analyses of the 2001 epidemic [5–7] and modeling of

preferred control policies both for the 2001 epidemic [4,8–9] and

future outbreaks of disease in the UK and elsewhere [10].

However, whilst data availability is good for the UK and other

countries in Europe, the same is not true for many other countries

around the world. In the USA, an agricultural census is carried out
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by the National Agricultural Statistics Service (NASS) every five

years. Whilst this database is available in the public domain, there

are strict laws in place regarding the types of data that the Federal

government can collect and maintain. This includes any data

regarding precise locations of livestock farms and therefore the

NASS data are aggregated at the level of the county in order to

assure anonymity for farmers. Large value is placed upon personal

freedoms in the USA, including the right of the individual to

privacy, and in the current climate, it seems unlikely that farm

locations would ever be made available to disease modellers.

Should there be a major disease outbreak, there may be pressure

to release these data, but it is vital to have models in place to use at

the onset of an epidemic – by the time that precise location data

may be available, it could be too late for models to have any effect

upon reducing disease spread and advising strategies for disease

control.

In general, in the event of an outbreak of disease, the risk of

infection of susceptible individuals decreases with distance from

any source of infection, with spatial structure playing a key role in

disease transmission for both humans [11] and animals [2–3,12–

13]. In the case of FMD, the main risk factor contributing to

transmission of disease has been shown to be proximity to

previously infected farms [14–16] and it therefore seems that a

precise knowledge of farm locations may be vital to making

epidemiological predictions.

Previous work for both the UK and US has investigated the

ability of county-level models with random farm locations to

predict the spatio-temporal dynamics of future epidemics [17].

The results show that, whilst random location models generally

underestimate epidemic sizes, preferred control policies (specifi-

cally ring culling) are found to be not substantially different for

both the random location and recorded farm location data models.

However, there is an important caveat to this. In this analysis, the

random location model provides robust policy advice only when

parameterised to fit early epidemic data, indicating that random

location models such as these could only be used once an epidemic

is in progress. In addition, whilst a model which can accurately

predict control strategies to minimise spread of disease has obvious

merit, one which can also predict the likely size and duration of the

epidemic would be highly beneficial for policy planning purposes.

This paper aims to build on the analysis of [17], by investigating

the ability of land cover data to usefully predict farm locations.

The spatio-temporal dynamics of a potential future outbreak of

foot-and-mouth disease in the UK and the impact of intervention

strategies as predicted by these synthetic databases are explored

and compared with observed outbreaks on the recorded farm

location data. Whilst previous work has investigated how

landscape heterogeneity influences outbreaks of disease [18–19]

and abundance of infected hosts [20–22] this is, as far as we are

aware, the first investigation into the ability of land cover to make

accurate disease control predictions in the absence of knowledge of

precise locations of individuals (farms). The novel analysis

presented in this paper will therefore provide useful insights into

our ability to use land cover data to approximate farm locations in

countries such as the USA where precise data are not available,

and enable the development of models to be used in the event of

future outbreaks of disease.

Materials and Methods

The model
The mathematical model used throughout this paper is an

adapted version of the model first used by Keeling and coworkers

[2] to predict spread and optimal control strategies during the

course of the 2001 FMD outbreak, after the introduction of a

nationwide movement ban. Farms are classified as susceptible,

exposed, infectious, reported or culled. A susceptible farm can

catch foot and mouth disease (FMD) from any infectious farm,

after which it is classified as exposed (the animals are incubating

the disease but are not yet infectious). The farm then transitions

into the infectious class and disease can now spread to susceptible

farms. In general, symptoms of the disease appear about 9 days

after infection, after which the farm becomes reported and the

farm is prioritised for culling. In line with previous estimates

[4,9,10,17], we assume an exposed period of 5 days, an infection-

to-report period of 4 days and a report-to-culling delay of 1 day

(see below).

The probability that a given susceptible farm j is infected by any

infectious farm i on each day is given by:

Pij~1{exp((½Nsheep,j �ps Ssheepz½Ncow,j �pc Scow)|
X

i

(½Nsheep,i�qs Tsheepz½Ncow,i�qc Tcow)|K(dij))

Ns,i is the number of livestock species s recorded as being on farm i,

Ss and Ts measure the species-specific susceptibility and transmis-

sibility, dij is the distance between farms i and j and K(dij) is the

distance-dependent transmission kernel, estimated from contact

tracing [2]. Finally, the parameters, ps, pc, qs and qc, are power law

parameters accounting for a non-linear increase in susceptibility

and transmissibility as animal numbers on a farm increase and

provide a closer fit to the 2001 data than when these powers are set

to unity [5,7,10]. The model is therefore a discrete time Markov

process where the probability of a susceptible farm being infected

(and farms being culled or vaccinated) on a given day is dependent

upon the state of all farms in the neighbourhood of that farm on

the previous day. Once the infection process has been carried out,

farms are updated into their new classes and the process is

repeated.

Pigs were the infected species on only 18 farms in the UK 2001

epidemic and therefore we have little information as to the

Author Summary

Mathematical models of infectious diseases are increas-
ingly used to inform policy decisions. The advantages of
such models are that multiple control options can be
rapidly tested and compared, without the risks and costs
associated with field experiments. However, for such
models to be practically useful tools detailed data (both
in terms of populations and epidemiology) are required. In
many countries, such as the USA, individual-level demo-
graphic information on livestock farms is generally lacking.
However, remotely sensed information (such as satellite
images and land-use maps) provides the potential to
generate these data or produce surrogate populations. In
this paper we use land cover data to predict farm locations
in the UK and investigate the effect of a precise knowledge
of farm locations upon epidemiological predictions in the
event of a foot-and-mouth disease epidemic. Our results
show that, when highly resolved land cover data are used
to predict farm locations, accurate predictions of epidemic
sizes, durations and preferred intervention strategies can
be obtained. This suggests that land cover data may be
used in countries where individual farm-level data are not
available, to allow for analyses to be carried out regarding
the likely spread of disease in future outbreaks.

Using Land Cover Maps to Inform Epidemic Models
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susceptibility or transmissibility of pigs for this strain of FMD, and

are therefore not considered in the analysis. However, the effect of

a potential future outbreak of FMD in the UK pig population has

been investigated in detail previously [10].

In addition to culling of infected premises (IPs), all dangerous

contacts (DCs), defined as ‘‘premises where animals have been in

direct contact with infected animals or have, in any way, become

exposed to infection’’, were pre-emptively culled in an effort to

control disease. DCs in our model are determined based upon

both prior infection by an IP and future risk of infection in the

same way as in previous work [9]. In 2001 there was a target of

culling all IPs within 24 hours of reporting infection and associated

pre-emptive culling within 48 hours. Whilst this result was rarely

achieved in practice during 2001, we assume a 24/48 hour policy

here. Previous work has investigated the effectiveness of this

strategy compared with one using the culling delays actually

carried out during 2001 [4].

In the event of an outbreak of FMD in the USA, it is assumed that

culling of IPs and DCs would be carried out automatically and other

control policies, such as ring culling and vaccination would be

considered as additional intervention strategies. In the UK,

vaccination was considered in 2001 but dismissed for a number of

reasons. At the time, any livestock that were vaccinated would have

to have been subsequently culled in order for the UK to regain its

international trading status of ‘‘free from foot-and-mouth disease-

without vaccination’’ status, and therefore the cost of carrying out a

nationwide vaccination campaign would have been prohibitive.

Since 2001, the Department of the Environment, Food and Rural

Affairs (DEFRA) has introduced a vaccinate-to-live policy as part of

their contingency plan in the event of future FMD outbreaks. The

OIE (Organisation International des Epizooties – the international

animal health standard setting body) has defined rules for countries

to recover their disease free status. In the event of vaccination-to-kill,

disease free status can be regained three months after the slaughter

of the last vaccinated animal, whilst in the event of a vaccinate-to-

live policy, disease free status resumes six months after the last

reported case or the last vaccination (whichever is latest), provided

that serological surveillance demonstrates that the remaining

vaccinated population is not infected. It is unlikely that preventative

vaccination would be considered as any country introducing such a

policy would lose their ‘‘disease free without vaccination’’ status and

this would heavily impact their export market. Also, cattle only

retain immunity from infection for a few months (up to around a

year) so repeated preventative vaccination campaigns would have to

be administered, at significant cost. Finally, there are multiple

serotypes of FMD virus with little to no cross-protection from a

vaccination for one serotype. All of these factors would make a

preventative vaccination campaign unviable in countries that are

currently disease free without vaccination.

In this work, we therefore investigate the effectiveness of

introducing a policy of ring culling or reactive vaccination in

addition to IP and DC culling. We assume that resources to carry

out control are limited and that a maximum of 100 farms can be

ring culled per day and 35,000 animals can be vaccinated per day

in line with previous work [9–10]. Sensitivity to these limits on

vaccination and ring culling have been investigated elsewhere [9–

10]. When an IP is reported, all farms within a particular radius of

that IP will be targeted for culling or vaccination. The radius of the

ring is allowed to vary between simulations and we seek the radius

which minimises the ‘‘Epidemic Impact’’, defined as the total

number of farms with livestock culled (either as IPs, DCs or ring

culled farms). We assume a ‘‘vaccinate-to-live’’ policy, such that

uninfected vaccinated animals do not contribute to the overall

Epidemic Impact.

Vaccination is assumed to take place within a ring around each

IP such that all farms within a given distance of every reported IP

will be vaccinated. Farms are vaccinated in the order they are

identified and vaccination around each farm is performed from the

outside in. The limit on the number of animals that can be

vaccinated per day means that some farms will be vaccinated

several days after they are first prioritised for vaccination. In line

with previous work, a vaccine efficacy of 90%, a five day delay

from the first reported case to the introduction of a vaccination

campaign and a four day delay from vaccination to immunity are

assumed. The number of animals vaccinated per day, vaccine

efficacy, the time delay to vaccine introduction and the time delay

to immunity will all influence the effectiveness of any vaccination

campaign. Whilst we do not test sensitivity to these assumptions in

this paper, their effect has been investigated in detail in previous

work [9]. Throughout this paper 5 farms in a 10 km cluster are

seeded initially with infection in each county prior to the

introduction of a ban on animal movements, to approximate a

localised outbreak, and these are defined as the primary cases.

Data
The model is seeded using data from the agricultural census

carried out in June 2000. Whilst the main aim of this paper is to

determine the effect of a precise knowledge of farm location upon

epidemiological predictions, it is also important to investigate the

effect of farm size and composition at the individual farm level, as

this information is also not available for many countries (including

the USA). It may be possible to obtain summaries of farm

information at the county or municipal level in some countries,

thus it is important to assess how transferrable this type of model is

for epidemic management. We therefore simulate these types of

data aggregation and averaging to compare to our known data.

We use data from the Agricultural Census for four counties in

the UK: Cumbria, Devon, Clwyd and Aberdeenshire. These four

counties are chosen owing to their differing demographies and

locations, allowing for a representative analysis of this approach

across the UK. According to the June 2000 Agricultural Census

there were 8036 farms in Cumbria, 11177 farms in Devon, 3563

farms in Clwyd and 3086 farms in Aberdeenshire. In the data sets

‘‘Shuffle’’, farm sizes and species compositions are shuffled

between farms within each county whilst farm locations are

preserved. This, in a sense, enables a preservation of farm

anonymity, whilst retaining the size and composition heterogeneity

across the data. In the data set denoted ‘‘All Equal’’, we assume

precise farm locations are known, but only the total number of

cattle and sheep within each county are known – as is the case in

the public realm in the USA. Each farm is therefore assumed to

have the same numbers of livestock, given by the average farm size

within each county. This data set allows for an investigation into

the effect of farm size heterogeneity upon disease dynamics. The

data sets denoted ‘‘Shuffle CSM’’ – where CSM is Cattle, Sheep,

Mixed - assume that the total numbers of farms that are cattle

only, sheep only or mixed farms are known, in addition to farm

locations and the total number of cattle and sheep within each

county. Farm locations are therefore shuffled whilst farm sizes in

each category (cattle only, sheep only and mixed) are identical,

and given by the average livestock numbers for that category.

These data sets will preserve clustering between farms but not

necessarily between farm sizes and types. Finally, the data sets

‘‘Random’’ randomly locate farms within each county, thus

removing all elements of clustering, whilst maintaining individual

farm sizes.

In order to carry out an analysis of the effect of imprecise

knowledge of farm location upon epidemiological predictions, we

Using Land Cover Maps to Inform Epidemic Models
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use land cover data compiled in 2000 as supplied by Land Cover

Map 2000 (LCM2000) to create surrogate farm databases for the

four counties in the UK listed above. LCM2000 categorises land

within the UK according to land cover classes at two scales: 10

aggregate classes (AC) and 26 subclasses (SC) (see table 1). These

land cover types are based on classification of satellite imagery

from Landsat TM (thematic mapper), ETM (enhanced thematic

mapper) and the LISS (linear self-scanning sensor) imagery,

calibrated with field surveys, to develop nested ‘broad habitat’

(roughly corresponding to AC) and ‘priority habitat’ (correspond-

ing to SC) maps in support of the UK Biodiversity Action Plan, the

UN Convention on Biological Diversity and to support conserva-

tion agencies in the UK (for details and methods, see [23–24]). In

the event of an epidemic in livestock in a country such as the USA

where detailed farm data are not widely available, land cover may

be used to approximate locations. LCM2000 enables us to

investigate the effect of using such geographic information for

the UK livestock system, as a means of comparing with known

locations.

We approach our land cover class selection as policy makers

might - using the best information available, in terms of land

cover, but without the resources to do exhaustive ground truthing

for farm locations. To explore how this best information approach

is vulnerable to decision maker opinion, we looked at two sets of

landcover class selections at each scale. In the UK, the majority of

cattle and sheep are kept on grassland (or housed, in the case of

cattle). We therefore deduce that farms would be located in AC

categories 4 and 5: ‘‘Improved grassland’’ and ‘‘semi-natural

grass’’ respectively (see table 1). However, some (often small) sheep

farms are also kept at higher altitudes. Thus, for a second broad

scale land cover selection, in addition to AC categories 4 and 5, we

may conclude that AC category 6, or ‘‘Mountain, heath and bog’’

would be a viable region in which farms may be located (see

table 1). We denote these first two selections Land Cover 1 (LC1)

and Land Cover 2 (LC2), in which farms are located within AC

categories 4 and 5, and 4, 5 and 6 respectively.

At the finer scale, using LCM2000 to define likely farm

locations based upon the subclasses (SC) within aggregate classes,

we created a second, nested set of land cover selections, using more

specific data. Land cover class AC 4 is comprised of only one

subclass category (14, or ‘‘Improved grassland’’), whilst AC 5,

‘‘semi-natural grass’’, comprises 5 subclasses. Of these 5 subclasses

only ‘‘Neutral grass’’ (SC 15), sounds likely to be correlated to

livestock farm locations, while others such as ‘‘Fen, marsh,

swamp’’ (SC 20) or ‘‘Bracken’’ (SC 17), do not (table 1). Thus,

data sets defined by LC3 (Land Cover 3) are more highly resolved

versions of LC1, in which farms are located only within subclasses

14 and 15.

Table 1. Table listing all subclasses (SC) and aggregate classes (AC) in the 1 km2 LCM 2000 database.

SC No. AC No. SC Type AC Type Land Cover data set

1 10 Sea/Estuary Oceanic Waters

2 8 Water (inland) Standing open water

3 9 Littoral rock Coastal

4 9 Littoral sediment Coastal

5 9 Saltmarsh Coastal

6 9 Supra-littoral rock Coastal

7 9 Supra-littoral sediment Coastal

8 6 Bog (deep peat) Mountain, heath, bog LC2

9 6 Dense dwarf shrub heath Mountain, heath, bog LC2, LC4

10 6 Open dwarf shrub heath Mountain, heath, bog LC2, LC4

11 6 Montane habitats Mountain, heath, bog LC2, LC4

12 1 Broad-leaved/mixed woodland Broad-leaved/mixed woodland

13 2 Coniferous woodland Coniferous woodland

14 4 Improved grassland Improved grassland LC1, LC2, LC3, LC4

15 5 Neutral grass Semi-natural grass LC1, LC2, LC3, LC4

16 5 Setaside grass Semi-natural grass LC1, LC2

17 5 Bracken Semi-natural grass LC1, LC2

18 5 Calcareous grass Semi-natural grass LC1, LC2

19 5 Acid grassland Semi-natural grass LC1, LC2

20 5 Fen, marsh, swamp Semi-natural grass LC1, LC2

21 3 Arable cereals Arable and horticulture

22 3 Arable horticulture Arable and horticulture

23 3 Arable non-rotational Arable and horticulture

24 7 Suburban/rural development Built up areas/gardens

25 7 Continuous urban Built up areas/gardens

26 6 Inland bare ground Mountain, heath, bog LC2

The subclass number, the corresponding aggregate class (AC) number and the land types are listed. The final column indicates which of the subclasses are included in
the generation of the data sets LC1–LC4. All ACs and SCs that are considered to be correlated with livestock farm locations are highlighted in bold.
doi:10.1371/journal.pcbi.1002723.t001

Using Land Cover Maps to Inform Epidemic Models
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AC region 6 is made up of 4 subclasses, of which ‘‘Dense Dwarf

Shrub Heath’’, ‘‘Open Dwarf Shrub Heath’’ and ‘‘Montane

habitats’’, or SC classes 9, 10 and 11 are deemed more likely to be

correlated to hill sheep farm locations than ‘‘Bog’’ (SC 8) and

‘‘Inland bare ground’’ (SC 26). LC4 is therefore a more resolved

version of LC2, comprising subclasses 9, 10, 11, 14 and 15. All

aggregate class and subclass land cover categories deemed to

potentially correlate with livestock farm locations are listed in

table 1.

Surrogate farm databases are now constructed using these land

cover values. The first spatially randomized data set ‘‘Random’’

simply distributed points across the landscape of each county,

regardless of land cover. We then added geographic information

by creating spatially randomized data sets constrained by land

cover class (LC) selection, according to LC 1–4 (R scripts are

provided in Datasets S1 and S2). Data points were randomly

located within each land cover spatial data set within each county,

corresponding to the number of farms in each of the four counties.

The individual attributes of farms such as number of sheep and

cows, and the area of the farm were then reassigned to the points.

One hundred unique data sets were generated for epidemic

simulation for each data type, with the exception of the data set

‘‘All Equal’’ (where only 1 data set can be generated for

simulation).

Results

We ran 1000 simulations for each data set in all four of our UK

counties and investigated the epidemic size and duration as

predicted by each data set. Should an epidemic occur in Cumbria,

then an average of 1012 farms would become infected and an

average of 1332 dangerous contacts (DCs) would be culled

(figure 1a, top and middle panels). The mean epidemic duration

according to the model is predicted to be 224 days (figure 1a,

bottom panel). If farm locations are shuffled, the model performs

well at predicting the mean total number of infected farms (1040),

the total number of DCs (1365) and the epidemic duration (219

days). The same result is found to be true for Devon,

Aberdeenshire and Clwyd, with accurate predictions found when

farm locations are shuffled (though epidemic duration is slightly

overestimated in all three cases).

As further uncertainty is built into the data, the ability of the

model to predict epidemiological behaviour deteriorates. For the

data sets ‘‘Shuffle CSM’’, the model performs well in Aberdeen-

shire where epidemics are typically small, but slightly over predicts

epidemic size and duration in Cumbria and Clwyd, whilst slightly

under predicting these same quantities in Devon (figure 1a; see

Table S1 for mean and 95% confidence intervals for all counties).

If all farm sizes are assumed equal, the model is found to over

predict the mean number of infected premises (IPs) and DCs in

Cumbria and Clwyd by around 50% and marginally over predict

epidemic duration, whilst significantly under predicting the same

quantities in Devon. Whilst clustering of farms is preserved in

these data sets, the lack of farm size heterogeneity appears to have

a significant influence upon the ability of the model to accurately

predict epidemic dynamics. If the true clustering is removed and

farms are located randomly within each county, the model predicts

small epidemics with a mean size of 90 infected farms in Cumbria,

as compared to 1,012, lasting an average of 106 days, rather than

224. Similar under predictions occur for epidemic sizes and

Figure 1. These plots show the number of dangerous contacts (DC, top panel), infected premises (IP, middle panel) and duration of
outbreak (T, bottom panel), for each of four counties: Aberdeen, Clywd, Cumbria and Devon, in simulated outbreaks of FMD. Each
set of simulations was run for a different method of deriving the underlying farm data: In (a) CSM, mean cow and sheep numbers on farms of that
category, EQU, equal numbers of cows and sheep on every farm, RAN, spatially randomized locations, SHU, farms shuffled between locations, and
TRU, the recorded data (see materials and methods for details). In (b) the different treatments are for derived land covers LC1–LC4, as described in the
materials and methods section, using coarse and fine resolution land cover classification to describe potential farm land. The boxes represent the
range of mean values for each of the 100 datasets used to run the model, and the whiskers show the 95% Prediction Interval (PI) for 1000 runs on
each of the 100 generated datasets. NB: the methods TRU and EQU have no range of mean values.
doi:10.1371/journal.pcbi.1002723.g001

Using Land Cover Maps to Inform Epidemic Models

PLOS Computational Biology | www.ploscompbiol.org 5 November 2012 | Volume 8 | Issue 11 | e1002723



durations in Devon, Clwyd and Aberdeenshire (figure 1a). We

conclude from this that, should precise farm locations in a region

be unknown, a random location model is not able to make

accurate predictions regarding epidemic size and duration.

Given that a random location model is a poor predictor of

epidemic sizes and durations on the recorded farm location data,

we now investigate epidemics simulated on the four land cover

data set groups discussed above. Land Cover 1 (LC1) and Land

Cover 2 (LC2) use aggregate classes to determine farm locations

and figure 1b shows that the model significantly under predicts the

number of IPs, DCs and epidemic duration in the counties of

Clwyd and Cumbria for both of these data types. The model

performs somewhat better in Devon and Aberdeenshire, though

actually slightly over predicts epidemic size and duration in Devon

and slightly under predicts these same quantities in Aberdeenshire.

It appears that the AC data sets (LC1 and LC2), whilst proving

better predictors than random location models, still differ

significantly from epidemics simulated on the recorded farm

location data.

Using the SC data, LC3, in which farms are located solely

within ‘‘Improved grassland’’ and ‘‘Neutral grass’’ regions,

predicted an average of 350 IPs in Devon and 32 in Aberdeen-

shire, compared with means of 330 and 31 respectively on the

recorded farm location data. In Cumbria and Clwyd however, the

mean number of IPs are found to be 818 and 214, slightly lower

than the 1012 and 308 respectively on the recorded farm location

data. Finally, the data sets in LC4 perform better than the data sets

using AC classes and prove good predictors of epidemic duration

but under predict epidemic sizes for all four counties (figure 1b;

Table S1).

In conclusion, the models using data sets in LC3 in particular

prove a significantly better predictor of epidemic size and duration

on the recorded farm location data when compared with random

location and AC constrained models. However, the slight under-

predicting for some counties indicates that some elements of local

clustering are not captured when using subclasses to determine

farm locations.

Ring culling
The model is now adapted to investigate the effect of the use of

these synthetic farm databases upon preferred control strategies, in

particular the optimal radius of a ring cull which minimises the

Epidemic Impact, as summarised in table 2. Should epidemics be

simulated on the recorded farm location data in Cumbria (figure 2,

upper left panel), the optimal ring cull radius is found to be 3.6 km

around all infected farms, resulting in a mean Epidemic Impact of

575 farms (figure 2, lower left panel). If precise farm sizes are

known but coordinates are not known and farms are located

randomly within Cumbria (figure 2, upper centre panel), the

model predicts optimal ring cull radii of only 1.0 km to 2.2 km. An

example for one of the random location data sets is shown in

figure 2, central panels. If optimal ring cull radii as predicted by

Table 2. Table showing the optimal ring cull radius RRC (in km) for epidemics simulated on the recorded farm location data and
the generated data sets ‘‘Random’’, LC1, LC2, LC3 and LC4 for Cumbria, Devon, Aberdeenshire and Clwyd (with the number of
farms and size of the county).

County RD Random Land Cover 1 Land Cover 2 Land Cover 3 Land Cover 4

Cumbria RRC 3.6 1.6 2.8 2.8 3.5 3.5

(8035 farms; 6768 km2) RRC(min)-RRC(max) 1.0–2.2 2.6–3.0 2.4–3.2 3.2–3.8 3.0–3.8

EI 575 81 287 149 512 423

Elmin-Elmax 71–102 264–308 136–162 445–561 386–439

DElmax 1398 199 305 17 30

Devon RRC 2.8 1.2 2.0 1.8 2.8 2.9

(11177 farms; 6707 km2) RRC(min)-RRC(max) 0.5–2.0 1.4–2.6 1.6–2.0 2.6–3.0 2.6–3.2

EI 302 72 158 167 255 171

Elmin-Elmax 65–85 139–179 153–189 243–267 160–186

DElmax 595 377 181 6 6

Aber’shire RRC 2.4 0.3 0.1 0.3 2.4 2.2

(3086 farms; 6313 km2) RRC(min)-RRC(max) 0.0–0.6 0.0–0.4 0.0–0.6 2.2–2.6 2.0–2.4

EI 41 24 21 26 56 40

Elmin-Elmax 6–35 8–38 12–41 52–63 36–45

DElmax 34 34 34 2 4

Clwyd RRC 3.6 0.8 1.3 1.4 3.5 3.1

(3564 farms; 2910 km2) RRC(min)-RRC(max) 0.2–1.8 0.8–1.8 0.8–1.8 3.2–3.8 2.8–3.4

EI 369 154 162 165 289 182

EImin-EImax 69–222 71–234 81–213 258–331 156–221

DEImax 281 221 221 14 69

The optimal ring cull radius is defined to be the radius which minimises the mean Epidemic Impact (EI). The mean Epidemic Impact (EI) is listed for the recorded farm
location data (RD), whilst for the simulated data sets, the mean (averaged over all 100 data sets) ring cull radius RRC (in km) and the mean Epidemic Impact (EI) and the
range of values of optimal ring cull radii (RRC(min)-RRC(max)) and Epidemic Impacts (EImin-EImax) across each group of 100 data sets are shown. The maximum increase in
epidemic impact, DEImax, if the optimal ring cull radius as determined on each of the 100 generated data sets in each group was carried out on the recorded farm
location data for that county (as opposed to a ring cull at optimal radius for the recorded farm location data) is quoted in brackets. The number of farms and area of
each county (in square kilometers) are also shown.
doi:10.1371/journal.pcbi.1002723.t002

Using Land Cover Maps to Inform Epidemic Models

PLOS Computational Biology | www.ploscompbiol.org 6 November 2012 | Volume 8 | Issue 11 | e1002723



the random location models were applied to the recorded farm

location data, the maximum potential increase in Epidemic

Impact is 1398 farms. This implies that, for Cumbria, at least

some knowledge of farm locations is required. In fact, in all four

counties the ring cull radii predicted as optimal by the ‘‘Random’’

data sets would result in significant increases to the Epidemic

Impact when applied to the recorded farm location data (table 2).

Of course, in the event of an epidemic, it may be possible to use

random location models parameterised to fit early outbreak data

to provide policy advice, as investigated in previous work [17].

The models using LC1 and LC2 data sets under predict the

optimal ring cull radius in all four counties resulting in a potential

increase in Epidemic Impact of several hundred farms in

Cumbria, Clwyd and Devon if these policies were applied to the

recorded farm location data (table 2). In Aberdeenshire, where

epidemics are typically small, the models predict that very low

radius or no ring culling is optimal. Applying such a policy to the

true data could, in a worst case scenario, almost double the mean

Epidemic Impact. If SC models are used however, a much closer

match to the optimal ring cull radius on the recorded farm

location data is found for all four counties. LC3 appears the best

predictor of optimal ring cull radius, with radii of 3.2 km–3.8 km

predicted for Cumbria and Clwyd (c.f. 3.6 km for the recorded

farm location data; see figure 2 right panels for an example data

set), 2.6 km–3.0 km for Devon (c.f. 2.8 km for the recorded farm

location data) and 2.2 km–2.6 km for Aberdeenshire (c.f. 2.4 km

for the recorded farm location data). If these ring culls were

applied to the recorded farm location data, the Epidemic Impact

would increase by a maximum of 17, 6, 2 and 14 farms for

Cumbria, Devon, Aberdeenshire and Clwyd respectively, com-

pared with ring culling at the optimal radius. When LC4 is used,

the model slightly underpredicts the optimal ring cull radius for

some data sets in Cumbria and Clwyd, resulting in larger potential

increases in Epidemic Impact of 30 and 69 farms respectively over

ring culling at the optimal value. Our conclusion is therefore that,

if the goal is to minimise farms lost to culling, the use of subclasses

to predominantly determine cattle farm locations (as in LC3)

provides the most robust representation of the recorded farm

location data. However, all land cover informed data sets

considered performed markedly better than models using random

farm locations.

Vaccination
Whilst ring culling may be considered as an additional control

strategy to standard culling of IPs and DCs in the event of future

epidemics in the UK or elsewhere, vaccination is a viable

alternative to ring culling and is now part of DEFRA’s contingency

plan for FMD.

We therefore calculated the optimal vaccination radius that

should be employed around all infected farms to minimize the

Epidemic Impact. In Cumbria, vaccination at 34.2 km around all

infected farms is found to minimize Epidemic Impact with a mean

Figure 2. The upper panels show farm location data for Cumbria according to the agricultural census (left panel), one realisation
assuming random locations (central panel) and one realisation assuming farms are located according to LC3 (right panel). The lower
panels show the mean epidemic impact (solid line) and the raw outputs (black dots) against the radius of ring culling for the three data sets shown in
the upper panels.
doi:10.1371/journal.pcbi.1002723.g002
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of 122 farms affected (table 3). In general, large vaccination radii

around all infected farms are found to be optimal when an FMD

outbreak is concentrated in a single region. Vaccination rings of

18.2 km, 30.4 km and 24.6 km are found to be optimal in Devon,

Aberdeenshire and Clwyd respectively, when epidemics are simu-

lated on the recorded farm location data (table 3). If farm locations

are random, the model predicts optimal vaccination radii of between

17.0 km and 76.4 km and a potential increase in Epidemic Impact of

46 farms over the optimal strategy. Similar results are observed for

Devon, Aberdeenshire and Clwyd, with the optimal strategy

according to the random location databases resulting in increased

Epidemic Impacts when applied to the recorded farm location data.

The use of Land Cover data to determine farm locations only

improves upon the random location model when SCs are used to

ascertain optimal vaccination strategies. In the worst case scenario,

the optimal vaccination radius according to the SC LC3 model

would result in an increase in Epidemic Impact of 25, 14, 5 and 8

farms in Cumbria, Devon, Aberdeenshire and Clwyd respectively,

compared with 46, 48, 10 and 9 farms respectively when the AC

LC1 model is used. This supports the conclusions for ring culling,

that land cover is able to dramatically improve the ability of the

model to make epidemiological predictions when resolved at a

sufficiently fine level of classification.

For outbreaks concentrated in single, contiguous regions, an

analysis of the relationship between Epidemic Impact and ring cull

radius reveals that the optimal radius is well defined, with a clear

minimum in the curve (see figure 3a for LC3 for Cumbria). However,

this does not hold true for vaccination. The optimal vaccination

radius is generally high (around 20 km–40 km) and therefore

vaccination rings tend to overlap. This results in a flattening out of

the Epidemic Impact curve when the vaccination radius exceeds a

certain critical value (see figure 3b for LC3 for Cumbria). Whilst

vaccination of 34.2 km around all infected farms may in fact be

optimal for Cumbria, the increase in Epidemic Impact is minimal

when vaccination radii are between around 20 km and 40 km.

In all vaccination studies we have carried out to date, we made

the assumption that the vaccination strategy is chosen to minimize

the total number of farms with livestock culled, with no cost

attached to the administration of the vaccination program.

However, in a situation where the optimal strategy is not clearly

defined, it may be important to select from a range of

‘‘acceptable’’ vaccination radii based upon the minimum number

of doses of vaccine that would be used. When vaccination radii are

small, vaccination is unable to control the epidemic in Cumbria

and a huge number of doses are ultimately used as the number of

farms infected increases dramatically. Whilst vaccination at 6 km

minimizes the number of doses used in Cumbria (figure 3c), 6 km

vaccination results in mean Epidemic Impacts around 3 times

higher than when vaccination occurs at 20 km. Therefore, whilst

34.2 km is optimal in terms of minimizing the number of farms

with livestock lost, a ‘‘better’’ strategy may be to vaccinate at

20 km, resulting in both a small epidemic and a reduced number

of doses of vaccine used. Ultimately, a full economic cost analysis

would allow for a rigorous identification of optimal strategies,

taking into account the full cost of culling of all species of livestock,

the cost of creating the vaccine and administering the vaccination

campaign, as well as the cost associated with the introduction of

movement restrictions and an international export ban.

Data utility
The epidemiological analysis presented in this paper concludes

that land cover data can be useful for models of control predictions

Table 3. Table showing the optimal vaccination radius RV (in km) for epidemics simulated on the recorded farm location data (RD)
and the generated data sets ‘‘Random’’, LC1, LC2, LC3 and LC4 for Cumbria, Devon, Aberdeenshire and Clwyd.

County RD Random Land Cover 1 Land Cover 2 Land Cover 3 Land Cover 4

Cumbria RV 34.2 42.0 44.6 41.5 38.9 36.6

RV(min)-RV(max) 17.0–76.0 16.6–76.6 15.4–72.2 18.8–61.0 14.6–58.8

EI 122 22 41 34 72 41

EImin-EImax 19–25 22–65 18–61 35–97 31–54

DEImax 46 46 51 25 23

Devon RV 18.2 31.5 29.9 30.4 25.2 28.0

RV(min)-RV(max) 10.2–71.0 11.6–63.4 14.8–65.4 16.0–48.0 14.2–52.2

EI 70 21 37 38 33 29

EImin-EImax 18–26 30–45 30–46 21–48 15–39

DEImax 54 48 46 14 21

Aber’shire RV 30.4 34.0 28.3 26.7 25.2 27.4

RV(min)-RV(max) 12.4–65.4 10.2–52.4 12.2–50.0 16.0–41.6 15.4–45.4

EI 31 9 10 10 17 15

EImin-EImax 7–10 7–12 8–12 10–22 11–19

DEImax 12 10 8 5 6

Clwyd RV 24.6 42.8 35.5 32.4 28.2 27.5

RV(min)-RV(max) 10–2–78.2 12.2–51.0 13.6–49.6 15.4–42.6 15.0–44.8

EI 75 15 15 14 30 22

EImin-EImax 12–19 13–16 12–17 21–40 17–28

DEImax 14 9 8 8 8

The rows in the table are the same as for table 2.
doi:10.1371/journal.pcbi.1002723.t003
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for foot-and-mouth disease spread. However, we found that for the

Land Cover Map 2000 for the UK, this only generates accurate

results when subclass (SC) data are used to inform farm locations. It

is therefore important to investigate what precisely is being captured

by the subclass data that is being missed in less resolved data.

When examining the recorded farm location data, we see that

the highest density of farms are found in the North and East of

Cumbria, with few farms in the centre of the County (figure 2,

upper left panel). This spatial heterogeneity is not captured either

when random locations are assumed (figure 2, upper centre panel),

or when ACs are used to determine farm locations. However,

when SCs are used, the generated spatial data are found to closely

correspond with the recorded farm location data (figure 2, upper

right panel). In particular the Lake District, in the centre of

Cumbria where no farms are located, is clearly visible when SCs

are used to determine farm locations. In our initial analysis, it was

decided that aggregate classes 4 and 5, ‘‘Improved Grassland’’ and

‘‘Semi-natural grass’’ respectively, were most likely to be

correlated with cattle farm locations. However, when we compare

this to spatial data from Land Cover Map for Cumbria, we see

that the Lake District, where few farms are located, is predom-

inantly in the ‘‘Semi-natural grass’’ category (figure 4, top panels).

Hence the use of ACs would preferentially locate farms in that

region and hence not capture the spatial clustering evident within

Cumbria. SC data proves much more useful in determining farm

locations, with SCs 14 and 15 closely mirroring true farm

locations, whilst SC 20 (Fen, Marsh and Swamp) appears to

account for the majority of the Lake District (figure 4, bottom

panels).

Whilst not quite as marked, a similar pattern is found in Devon.

From the recorded farm location data (Figure S1, left panel) we see

that there are very few farms in a large proportion of the South

West of the county. This region is dominated by Dartmoor

National Park. If we assume random locations for farms, the

resultant density map bears little resemblance to the recorded data

(Figure S1, centre panel). However, when the LC3 data set is used,

a much better approximation to the recorded data is observed,

with the absence of farms in the Dartmoor region clearly visible

(Figure S1, right panel).

We now examine how well our synthetic data capture the

spatial clustering of farms observed in the recorded farm location

data. A simple method to estimate the statistical difference

between the recorded and synthetic data sets is to calculate the

root mean square error (RM) between actual farm locations (as

determined by the agricultural census) and predicted farm

locations (as predicted by our LC data sets described above),

averaged over all 100 realisations of the given synthetic data set. In

order to calculate the value of RM, we project a uniform set of

square grids of a given size over each county and calculate the RM

over all grids as the size of the grids vary. Therefore:

RM(r)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j~1

Xn

i~1

Di(r){Sij(r)
� �2

mn

vuut

Figure 3. Graphs showing the mean Epidemic Impact against
the radius of ring culling/vaccination for Cumbria only, for the
recorded farm location data (blue line) and for five randomly
selected data sets from LC3 for (a) ring culling and (b)
vaccination. The results for the randomly selected data sets in each

category are given by the red, green, yellow, magenta and cyan lines.
The raw outputs for the recorded farm location data are shown by the
blue dots. The black circles on each line indicate the radius which
minimises the Epidemic Impact in each case. Each line is the mean of
20,000 model simulations and epidemics are seeded in Cumbria. (c) The
number of doses of vaccine used as the vaccination radius varies for
Cumbria (solid line), Devon (dashed line), Aberdeenshire (dash-dot line)
and Clwyd (dotted line).
doi:10.1371/journal.pcbi.1002723.g003
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where n is the total number of grids of length r, Di(r) is the number

of farms in grid i in the recorded data, Sij(r) is the number of farms

in grid i according to synthetic data set j, and m is the total number

of synthetic data sets generated (set to 100 in this paper).

This metric is determined for the random location data sets and

LC1–LC4 as the length r of each grid varies from 1 km to 100 km.

The results are summarised in figure 5 for Cumbria. For low values

of r, the majority of grid squares have few farms in both the recorded

and synthetic data and therefore the value of RM is low for all

synthetic data sets. However, as r is increased, the spatial error in the

synthetic data becomes evident as RM increases (see figure 5a for

Cumbria). The LC1 and LC2 data sets are found to perform no

better than the random data sets, whilst the root mean square error

is found to be lowest when LC3 data sets are used. In Cumbria, as r

increases beyond approximately 30 km, the value of RM decreases

for all data sets, before increasing once again for r greater than

approximately 50 km. This unusual phenomenon may be because

of the demographic nature of Cumbria – the presence of the Lake

District in the centre of the county, correlated with an absence of

farms, may indicate that there is little clustering present in the data

at length scales of between 30 and 50 km and hence root mean

square errors over grid scales of this range of sizes would decrease.

As r is increased yet further, the value of RM increases once again

before ultimately decreasing to zero at the point that the whole of

Cumbria is confined within a single grid square. We find similar, but

less marked behaviour in Devon, owing to the presence of

Dartmoor in the South West of the County. We conclude that,

whilst clustering at all scales is not captured precisely using land

cover, the data sets using subclasses perform significantly better than

those using more coarse scale aggregate classes.

As an alternate measure of the clustering of the synthetic data

sets, we calculate the density of farms (per km2) within a given

radius r of all farms and average this over all farms and all

replicates of each synthetic data set. We can then compare all land

cover and the random location data sets to the recorded data set

and determine how well the synthetic data sets capture both short

and long range clustering. Results are summarised in figure 5b for

Cumbria. All data sets appear to underestimate local clustering in

Cumbria. This is unsurprising – even subclass data will not be able

to capture the fine-scale local clustering behavior of farm locations.

Figure 4. Land cover parcels for the 10 aggregate classes (top two panels) and 25 subclasses (bottom two panels) according to
Land Cover Map 2000. Land cover classes that are assumed to host livestock farms are colored in shades of green, whilst all other land cover
classes are colored in shades of grey according to LC1 (top left panel), LC2 (top right panel), LC3 (bottom right panel) and LC4 (bottom left panel).
Figure provided courtesy of the Centre for Ecology and Hydrology (NERC (CEH)).
doi:10.1371/journal.pcbi.1002723.g004
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Figure 5. Graphs showing (a) the root mean square error (RM) between the synthetic data and the recorded data for Cumbria as the
radius is varied and (b) the mean density of farms (per km2) within a given radius of all other farms, averaged over all realisations
of each synthetic data set. 95% confidence intervals are also shown for each data set. In both (a) and (b) results are shown for the random data
(black line), LC1 (magenta line), LC2 (green line), LC3 (blue line) and LC4 (red line). In (b), spatial clustering for the recorded data is indicated by the
cyan line.
doi:10.1371/journal.pcbi.1002723.g005
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However, local clustering is found to be much higher in the LC3

and LC4 data sets than in the LC1, LC2 and random location

data sets. As the radius r increases, the mean density of farms in the

recorded data is more accurately captured in all data sets. We note

that synthetic data sets LC1 and LC2 have higher clustering than

the recorded data at scales greater than around 30 km. The

absence of farms in the Lake District will not be captured by these

data sets and therefore we would expect increased clustering in

these data sets for radii between around 30 and 50 km. A much

closer fit to the spatial clustering present in the recorded data is

found with data sets LC3 and LC4 (figure 5b, blue and red lines

for LC3 and LC4 respectively). Similar behavior is found for all

other counties analysed in this paper (see Figure S2). Whilst we are

not capturing all the spatial clustering properties of the recorded

data by using land cover data, it is apparent from this paper that

the level of clustering in the synthetic data sets LC3 is sufficient to

provide accurate predictions of epidemiological properties in the

event of an outbreak of disease.

Discussion

The ability of infectious disease models to make accurate

epidemiological predictions – particularly for control - is highly

dependent upon the accuracy of spatio-temporal epidemic and

location data. In countries such as the USA, when farm data are

only available at an aggregate scale, land use and other geographic

data may be useful for creating surrogates for precise farm

locations. The use of farm location data in the UK combined with

Land Cover Map 2000 enables an investigation into the utility of

land use maps to estimate farm locations and the effect of the

estimation process upon size, duration and preferred control

strategies for future epidemics.

It is clear that the loss of clustering which occurs when assuming

random locations for farms causes a massive underestimate in

epidemic sizes and durations, which could lead to inaccurate

culling and vaccination recommendations to policy makers. The

use of broadly defined landscape classes to determine farm

locations improved this somewhat, but the increased Epidemic

Impacts which would occur from adopting suggested vaccination

or ring culling policies are still significant. However, when farm

locations were correlated to more resolved landscape classes, in

particular ‘‘Improved Grassland’’ and ‘‘Neutral grass’’, the model

captured the spatio-temporal epidemic profile well and provides

accurate predictions for control. This proves an interesting result –

whilst land use can act as an accurate predictor for farm locations,

poorly resolved data could generate model predictions that deviate

significantly from observations.

The land cover data set that performed best in this analysis,

LC3, was chosen to correlate with cattle farm locations. LC4 was

extended to accommodate farms located within shrub heath and

montane habitats, to account for hill sheep farm locations. The

model using LC4 data did not perform as well as LC3 and we

conclude that this data set, which would inaccurately locate some

large cattle farms in hill farm locations, would lose elements of

clustering of large farms and so underestimate epidemic sizes and

durations. The impact of underestimating epidemic sizes and

durations on control could lead to significantly larger ‘escaped’

epidemics, and add loss of livestock and financial resources. In

addition, this particular example may reveal an added conun-

drum, wherein we are over-estimating potential farm habitat and

overshooting the information optimum, even with the finely

resolved landscape classifications.

It is important to note that this paper only focuses on spread of

infection within counties in the UK and does not address the issue

of the influence of precise farm locations upon between county

spread. In Cumbria, the presence of the Lake District in the center

of the county would suggest that a random location model would

predict lower livestock densities near county borders and therefore

underestimate cross-border transmission. Equally, models of

counties with natural boundaries at their borders (e.g. mountain

ranges or lakes) would overestimate cross border transmission in a

random location model. The use of land cover data of sufficient

resolution would provide a better estimate of farm locations in

close proximity to county boundaries and hence a more accurate

prediction of cross-border spread of disease.

The advantage of this approach over previous work [17] is that

it enables epidemiological predictions to be made in the advance

of an epidemic, based upon known strain characteristics. It also

provides a framework for assessing the potential for epidemic

impact and spread in low data environments, and identifies the

pitfalls and potential costs of too little information. An obvious

extension of this work would be to utilise a Bayesian statistical

inference approach [25–27] to fit models that utilise land cover

data to historical epidemic data (e.g. the early stages of the 2001

FMD epidemic in the UK) and investigate the accuracy with

which these models can predict the spatio-temporal dynamics of

the epidemic and preferred intervention strategies. This would

provide insights into the utility of such models to be used during

the early stages of future epidemics to provide robust policy

advice.

Supporting Information

Dataset S1 R script designed to generate 100 sets of spatially

random points within a non-continuous raster representing certain

landcover types.

(TXT)

Dataset S2 R script designed to generate 100 sets of spatially

random points within a single polygon.

(TXT)

Figure S1 Data for Devon showing the density of farms

according to (a) the truth data, (b) assuming random locations (c)

when locating farms using ‘‘Land Cover 3’’ data. Farm densities

are shown in parcels of 4 square kilometers and the color scale

shows the number of farms per square kilometer within each grid

square.

(TIF)

Figure S2 Graphs showing the average density of farms against

radius around each farm as the radius varies for Aberdeenshire

(upper panel), Clwyd (middle panel) and Devon (lower panel).

Each graph shows density for the recorded data (cyan line),

random data (black line), ‘‘Land Cover 1’’ data (magenta line),

‘‘Land Cover 2’’ data (green line), ‘‘Land Cover 3’’ data (blue line)

and ‘‘Land Cover 4’’ data (red line).

(TIF)

Figure S3 Graph showing the mean and 95% confidence

intervals of the Epidemic Impact in Cumbria for the recorded data

(black), the generated data set ‘‘Random’’ (red) and the land cover

derived data set LC3 (blue) as the transmissibility of cattle (Tc) is

varied. The arrow indicates the value of Tc that was used in the

model to simulate the UK 2001 epidemic.

(TIF)

Table S1 The mean and 95% confidence intervals of number of

IPs, DCs and the duration (in days) for epidemics seeded in

Cumbria, Devon, Clwyd and Aberdeenshire. Epidemics are

simulated using the recorded data, the generated data sets
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‘‘Shuffle’’, ‘‘Shuffle CSM’’, ‘‘All Equal’’ and ‘‘Random’’ and the

land cover derived data sets LC1–LC4.

(PDF)

Table S2 The proportion of pixels (1 km2) in each county in

each land cover class, for all counties, aggregate class (AC) and

subclass (SC) in the LCM 2000 database. Cover classes in LC1–

LC4 are denoted in bold.

(PDF)

Table S3 Proportions (MEAN and SD) of farms occurring in

each land cover class, for recorded data (aggregate class, AC, and

subclass, SC), Random (AC, SC); cover classes in LC1–LC4 are in

bold, and are summarized in the final table of the four Land cover

scenarios in the paper - LC1–LC4.

(PDF)

Table S4 The mean and 95% confidence intervals of number of

IPs, DCs for epidemics seeded in Cumbria with no ring culling,

and the optimal ring cull radius RRC (in km) when ring culling is

included, for epidemics on the recorded data, the generated data

set ‘‘Random’’ and the land cover derived data set LC3.

Epidemics are simulated using the UK 2001 dispersal kernel, a

kernel with twice the height and half the width of the UK kernel

(Kernel 2) and a kernel with half the height and twice the width of

the UK kernel (Kernel 3). For the simulated data sets, the range of

values of optimal ring cull radii (RRC(min)-RRC(max)) across each

group of 100 data sets are shown.

(PDF)

Text S1 Supplementary information providing details of sensi-

tivity analyses and describing supplementary figures S1 to S3 and

supplementary tables S1 to S4.

(PDF)
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