30 research outputs found

    γH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation

    Get PDF
    BACKGROUND: The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs); these domains can be observed by immunofluorescence microscopy and are termed gammaH2AX foci. H2AX phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not consistently indicate otherwise. However, we observed an apparently uneven distribution of gammaH2AX foci following X-irradiation with regions of the nucleus devoid of foci. METHODOLOGY/PRINCIPLE FINDINGS: Using immunofluorescence microscopy, we show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by ongoing DNA replication. CONCLUSIONS/SIGNIFICANCE: We discuss a number of possible mechanisms that could account for the observed pattern of H2AX phosphorylation. Since gammaH2AX is regarded as forming a platform for the recruitment or retention of other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from that in euchromatic regions. The differential responses of heterochromatic and euchromatic compartments of the genome to DSBs will have implications for understanding the processes of DNA repair in relation to nuclear and chromatin organization

    COVID-19: Third dose booster vaccine effectiveness against breakthrough coronavirus infection, hospitalisations and death in patients with cancer: A population-based study

    Get PDF
    Purpose: People living with cancer and haematological malignancies are at increased risk of hospitalisation and death following infection with acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus third dose vaccine boosters are proposed to boost waning immune responses in immunocompromised individuals and increase coronavirus protection; however, their effectiveness has not yet been systematically evaluated. Methods: This study is a population-scale real-world evaluation of the United Kingdom’s third dose vaccine booster programme for cancer patients from 8th December 2020 to 7th December 2021. The cancer cohort comprises individuals from Public Health England’s national cancer dataset, excluding individuals less than 18 years. A test-negative case-control design was used to assess third dose booster vaccine effectiveness. Multivariable logistic regression models were fitted to compare risk in the cancer cohort relative to the general population. Results: The cancer cohort comprised of 2,258,553 tests from 361,098 individuals. Third dose boosters were evaluated by reference to 87,039,743 polymerase chain reaction (PCR) coronavirus tests. Vaccine effectiveness against breakthrough infections, symptomatic infections, coronavirus hospitalisation and death in cancer patients were 59.1%, 62.8%, 80.5% and 94.5% respectively. Lower vaccine effectiveness was associated with a cancer diagnosis within 12 months, lymphoma, recent systemic anti-cancer therapy (SACT) or radiotherapy. Lymphoma patients had low levels of protection from symptomatic disease. In spite of third dose boosters, following multivariable adjustment, individuals with cancer remain at increased risk of coronavirus hospitalisation and death compared to the population control (OR 3.38, 3.01 respectively. p<0.001 for both). Conclusions: Third dose boosters are effective for most individuals with cancer, increasing protection from coronavirus. However, their effectiveness is heterogenous, and lower than the general population. Many patients with cancer will remain at increased risk of coronavirus infections, even after 3 doses. In the case of patients with lymphoma, there is a particularly strong disparity of vaccine effectiveness against breakthrough infection and severe disease. Breakthrough infections will disrupt cancer care and treatment with potentially adverse consequences on survival outcomes. The data support the role of vaccine boosters in preventing severe disease, and further pharmacological intervention to prevent transmission and aid viral clearance to limit disruption of cancer care as the delivery of care continues to evolve during the coronavirus pandemic

    Mortality Among Adults With Cancer Undergoing Chemotherapy or Immunotherapy and Infected With COVID-19

    Get PDF
    Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. // Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. // Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. // Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. // Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. // Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19–related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). // Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed

    p53 Elevation in Relation to Levels and Cytotoxicity of Mono- and Bifunctional Melphalan-DNA Adducts

    No full text

    Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique

    No full text
    We have shown that both DNA topoisomerase (topo) IIalpha and beta are in vivo targets for etoposide using a new assay which directly measures topo IIalpha and beta cleavable complexes in individual cells after treatment with topo II targeting drugs. CCRF-CEM human leukemic cells were exposed to etoposide for 2 hr, then embedded in agarose on microscope slides before cell lysis. DNA from each cell remained trapped in the agarose and covalently bound topo II molecules from drug-stabilized cleavable complexes remained associated with the DNA. The covalently bound topo II was detected in situ by immunofluorescence. Isoform-specific covalent complexes were detected with antisera specific for either the alpha or beta isoform of topo II followed by a fluorescein isothiocyanate-conjugated second antibody. DNA was detected using the fluorescent stain Hoechst 33258. A cooled slow scan charged coupled device camera was used to capture images. A dose-dependent increase in green immunofluorescence was observed when using antisera to either the alpha or beta isoforms of topo II, indicating that both isoforms are targets for etoposide. We have called this the TARDIS method, for trapped in agarose DNA immunostaining. Two key advantages of the TARDIS method are that it is isoform-specific and that it requires small numbers of cells, making it suitable for analysis of samples from patients being treated with topo II-targeting drugs. The isoform specificity will enable us to extend our understanding of the mechanism of interaction between topo II-targeting agents and their target, the two human isoforms

    Dual Photochemical H-Atom Transfer and Cobalt Catalysis for the Desaturative Synthesis of Phenols from Cyclohexanones

    No full text
    Abstract Phenols are integral aromatic molecules widely encountered in the structure of natural products and routinely utilised for the synthesis of high-value materials. Accessing highly substituted derivatives can often be difficult, especially when their functionalization pattern does not match the intrinsic reactivity leveraged by electrophilic aromatic substitution (SEAr) chemistry. Here, we provide an alternative and mechanistically distinct approach for phenol synthesis using saturated cyclohexanone precursors. This process operates at ambient temperature, under simple purple light irradiation, and features a dual catalytic manifold carrying four sequential H-atom transfer processes

    Substituted β-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators

    No full text
    The encapsulation of three platinum(II)-based anticancer complexes, [(5,6-dimethyl-1,10-phenanthroline)(1S,2Sdiaminocyclohexane) platinum(II)]2+ (56MESS), [(5,6-dimethyl-1,10-phenanthroline)(1R,2R-diaminocyclohexane)platinum( II)]2+ (56MERR), and [(5,6-dimethyl-1,10-phenanthroline)(ethylenediamine)platinum(II)]2+ (56MEEN), with carboxylated-β-cyclodextrin (c-β-CD) and p-sulfonatocalix[4]arene (s-CX[4]) has been examined by one- and twodimensional 1H nuclear magnetic resonance (NMR) spectroscopy, pulsed gradient spin-echo NMR, ultraviolet spectrophotometry, glutathione degradation experiments, and growth inhibition assays. Titration of any of the three metal complexes with c-β-CD resulted in 1:1 encapsulation complexes with the cyclodextrin located over the intercalating ligand of the metal complexes, with a binding constant of 104-105 M-1. In addition to binding over the phenanthroline ligand of 56MEEN, c-β-CD was also found to portal bind to the ethylenediamine ligand, with fast exchange kinetics on the NMR timescale between the two binding sites. In contrast, the three metal complexes all formed 2:2 inclusion complexes with s-CX[4] where the two metal complexes stacked in a head-to-tail configuration and were capped by the s-CX[4] molecules. Interestingly, the 56MEEN-s-CX[4] complex appeared to undergo a thermodynamically controlled rearrangement to a less soluble complex over time. Encapsulation of the metal complexes in either c-β-CD or s-CX[4] significantly decreased the metal complexes’ rate of diffusion, consistent with the formation of larger particle volumes. Encapsulation of 56MESS within s-CX[4] or c-β-CD protected the metal complex from degradation by reduced L-glutathione, with a reaction half-life greater than 9 days. In vitro growth inhibition assays using the LoVo human colorectal cancer cell line showed no significant change in the cytotoxicity of 56MESS when encapsulated by either s-CX[4] or c-β-CD

    Substituted beta-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators

    No full text
    The encapsulation of three platinum(II)-based anticancer complexes, [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)]2+ (56MESS), [(5,6-dimethyl-1,10-phenanthroline)(1R,2R-diaminocyclohexane)platinum(II)]2+ (56MERR), and [(5,6-dimethyl-1,10-phenanthroline)(ethylenediamine)platinum(II)]2+ (56MEEN), with carboxylated-β-cyclodextrin (c-β-CD) and p-sulfonatocalix[4]arene (s-CX[4]) has been examined by one- and two-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy, pulsed gradient spin−echo NMR, ultraviolet spectrophotometry, glutathione degradation experiments, and growth inhibition assays. Titration of any of the three metal complexes with c-β-CD resulted in 1:1 encapsulation complexes with the cyclodextrin located over the intercalating ligand of the metal complexes, with a binding constant of 104−105 M−1. In addition to binding over the phenanthroline ligand of 56MEEN, c-β-CD was also found to portal bind to the ethylenediamine ligand, with fast exchange kinetics on the NMR timescale between the two binding sites. In contrast, the three metal complexes all formed 2:2 inclusion complexes with s-CX[4] where the two metal complexes stacked in a head-to-tail configuration and were capped by the s-CX[4] molecules. Interestingly, the 56MEEN-s-CX[4] complex appeared to undergo a thermodynamically controlled rearrangement to a less soluble complex over time. Encapsulation of the metal complexes in either c-β-CD or s-CX[4] significantly decreased the metal complexes' rate of diffusion, consistent with the formation of larger particle volumes. Encapsulation of 56MESS within s-CX[4] or c-β-CD protected the metal complex from degradation by reduced L-glutathione, with a reaction half-life greater than 9 days. In vitro growth inhibition assays using the LoVo human colorectal cancer cell line showed no significant change in the cytotoxicity of 56MESS when encapsulated by either s-CX[4] or c-β-CD
    corecore