324 research outputs found
Giga-Gauss scale quasistatic magnetic field generation in an 'escargot' target
A simple setup for the generation of ultra-intense quasistatic magnetic
fields, based on the generation of electron currents with a predefined geometry
in a curved 'escargot' target, is proposed and analysed. Particle-In-Cell
simulations and qualitative estimates show that giga-Gauss scale magnetic
fields may be achieved with existent laser facilities. The described mechanism
of the strong magnetic field generation may be useful in a wide range of
applications, from laboratory astrophysics to magnetized ICF schemes.Comment: Submitted to PRL. arXiv admin note: text overlap with arXiv:1409.524
Dynamics and stability of radiation-driven double ablation front structures.
The dynamics of double ablation front (DAF) structures is studied for planar targets with moderate atomic number ablators. These structures are obtained in hydrodynamic simulations for various materials and laser intensities and are qualitatively characterized during the acceleration stage of the target. The importance of the radiative transport for the DAF dynamics is then demonstrated. Simulated hydrodynamic profiles are compared with a theoretical model, showing the consistency of the model and the relevant parameters for the dynamics description. The stability of DAF structures with respect to two-dimensional perturbations is studied using two different approaches: one considers the assumptions of the theoretical model and the other one a more complete physics. The numerical simulations performed with both approaches demonstrate good agreement of dispersion curve
A plasma solenoid driven by an Orbital Angular Momentum laser beam
A tens of Tesla quasi-static axial magnetic field can be produced in the
interaction of a short intense laser beam carrying an Orbital Angular Momentum
with an underdense plasma. Three-dimensional "Particle In Cell" simulations and
analytical model demonstrate that orbital angular momentum is transfered from a
tightly focused radially polarized laser beam to electrons without any
dissipative effect. A theoretical model describing the balistic interaction of
electrons with laser shows that particles gain angular velocity during their
radial and longitudinal drift in the laser field. The agreement between PIC
simulations and the simplified model identifies routes to increase the
intensity of the solenoidal magnetic field by controlling the orbital angular
momentum and/or the energy of the laser beam
Coherent forward stimulated Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray
A statistical model for forward stimulated Brillouin scattering (FSBS) is
developed for a spatially incoherent, monochromatic, laser beam propagating in
a plasma. A threshold for the average power in a speckle is found, well below
the self-focusing one, above which the laser beam spatial incoherence can not
prevent the coherent growth of FSBS. Three-dimensional simulations confirm its
existence and reveal the onset of beam spray above it. From these results, we
propose a new figure of merit for the control of the propagation through a
plasma of a spatially incoherent laser beam.Comment: submitted to PR
Effect of electron heating on self-induced transparency in relativistic intensity laser-plasma interaction
The effective increase of the critical density associated with the
interaction of relativistically intense laser pulses with overcritical plasmas,
known as self-induced transparency, is revisited for the case of circular
polarization. A comparison of particle-in-cell simulations to the predictions
of a relativistic cold-fluid model for the transparency threshold demonstrates
that kinetic effects, such as electron heating, can lead to a substantial
increase of the effective critical density compared to cold-fluid theory. These
results are interpreted by a study of separatrices in the single-electron phase
space corresponding to dynamics in the stationary fields predicted by the
cold-fluid model. It is shown that perturbations due to electron heating
exceeding a certain finite threshold can force electrons to escape into the
vacuum, leading to laser pulse propagation. The modification of the
transparency threshold is linked to the temporal pulse profile, through its
effect on electron heating.Comment: 13 pages, 12 figures; fixed some typos and improved discussion of
review materia
Characterization of laser-produced fast electron source for integrated simulation of fast ignition
Relativistic electron currents (∼ 10 kA µm−2) are produced by focusing an intense laser beam (I ≥ 1019W cm−2) on a solid target. Based on this mechanism, an original inertial confinement fusion scheme has been proposed which consists in heating the compressed deuterium-tritium core with a laser-produced electron beam. Experimentally the fast electron source is not well characterized and simulations of both electron generation and transport remain a difficult task. Generally, transport codes are used with a simplified fast electron source as initial condition. The fast electron spectrum is assumed to be exponential with an adjustable temperature, and the divergence is characterized by a dispersion angle. To verify these assumptions, we have performed a characterization of the laser-driven fast electron source by means of PIC simulations [1] in the cases of a planar foil and a double cone
Electron and ion kinetic effects in the saturation of a driven ion acoustic wave
The role of ion and electron kinetic effects is investigated in the context of the nonlinear saturation of a driven ion acoustic wave(IAW) and its parametric decay into subharmonics. The simulations are carried out with a full–particle-in-cell (PIC) code, in which both ions and electrons are treated kinetically. The full-PIC results are compared with those obtained from a hybrid-PIC code (kinetic ions and Boltzmann electrons). It is found that the largest differences between the two kinds of simulations take place when the IAW is driven above the ion wave-breaking limit. In such a case of a strong drive, the hybrid-PIC simulations lead to a Berstein-Greene-Kruskal-like nonlinear IAW of a large amplitude, while in the full-PIC the IAW amplitude decays to a small level after a transient stage. The electron velocity distribution function is significantly flattened in the domain of small electron velocities. As a result the nonlinear frequency shift due to the electron kinetic effects compensates partly the nonlinear frequency shift due to the ion kinetic effects, allowing then for the parametric decay of the driven IAW into subharmonics. These observations lead to the conclusion that electron kinetic effects become important whenever the nonlinear effects come into play
Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics
The mechanism of ablation of solids by intense femtosecond laser pulses is
described in an explicit analytical form. It is shown that at high intensities
when the ionization of the target material is complete before the end of the
pulse, the ablation mechanism is the same for both metals and dielectrics. The
physics of this new ablation regime involves ion acceleration in the
electrostatic field caused by charge separation created by energetic electrons
escaping from the target. The formulae for ablation thresholds and ablation
rates for metals and dielectrics, combining the laser and target parameters,
are derived and compared to experimental data. The calculated dependence of the
ablation thresholds on the pulse duration is in agreement with the experimental
data in a femtosecond range, and it is linked to the dependence for nanosecond
pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000;
papers QMD6 and CTuK11
- …