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The role of ion and electron kinetic effects is investigated in the context of the nonlinear saturation
of a driven ion acoustic wave (IAW) and its parametric decay into subharmonics. The simulations
are carried out with a full-particle-in-cell (PIC) code, in which both ions and electrons are treated
kinetically. The full-PIC results are compared with those obtained from a hybrid-PIC code (kinetic
ions and Boltzmann electrons). It is found that the largest differences between the two kinds of
simulations take place when the IAW is driven above the ion wave-breaking limit. In such a case of
a strong drive, the hybrid-PIC simulations lead to a Berstein-Greene-Kruskal-like nonlinear IAW of
a large amplitude, while in the full-PIC the IAW amplitude decays to a small level after a transient
stage. The electron velocity distribution function is significantly flattened in the domain of small
electron velocities. As a result the nonlinear frequency shift due to the electron kinetic effects
compensates partly the nonlinear frequency shift due to the ion kinetic effects, allowing then for the
parametric decay of the driven IAW into subharmonics. These observations lead to the conclusion
that electron kinetic effects become important whenever the nonlinear effects come into play.

© 2005 American Institute of Physics. [DOI: 10.1063/1.2132272]

I. INTRODUCTION

Understanding of the nonlinear ion acoustic wave (IAW)
behavior is a fundamental problem of great interest, with an
important incidence in the context of laser-plasma interac-
tion. In particular, the IAW nonlinearities are considered to
be responsible for the fact that the stimulated Brillouin scat-
tering (SBS) of the laser light in present day experiments
develops at a much lower level than predicted by the linear
theory. However, the extrapolation of this result to laser
fusion-relevant conditions, leading to the conclusion that
SBS will stay at a low level, remains highly questionable. An
appropriate understanding of the saturation mechanism is
therefore of high importance for predictive modeling. Vari-
ous nonlinear mechanisms have been invoked to explain the
IAW saturation, including fluid-type effects such as the har-
monics and/or the subharmonics generation, presence of
long-wavelength density fluctuations, laser momentum depo-
sition, and ion kinetic effects.' ™

It is now widely accepted that ion kinetic effects play an
important role even for the IAW amplitudes below the wave-
breaking limit,"” at which the ion distribution function is
strongly modified. Weak kinetic effects have been studied

YElectronic mail: riconda@celia.u-bordeaux1.fr

1070-664X/2005/12(11)/112308/13/$22.50

12, 112308-1

analytically in the limit of a modification of the distribution
function around the IAW phase velocity only. Such a modi-
fication of the ion distribution function leads to the suppres-
sion of the Landau damping, on one hand, and to a nonlinear
frequency shift, on the other hand.'®"7 The existence of a
nonlinear frequency shift results, in turn, in a local detuning
of the three-wave resonance condition, and such a nonlinear
detuning has been invoked to explain the saturation of the
SBS reﬂf:ctivity.3’l3’18722 The parametric decay of the driven
IAW into subharmonics, a process also called the “two-ion
decay,” has been suggested as another mechanism to explain
the saturation of the SBS reflectivity. By this process the
SBS-driven IAW energy is transferred to long-wavelength
TIAWs (subharmonics), which cannot be resonantly coupled
to SBS.” The generation of subharmonics of the SBS-driven
IAW has been observed for the first time in two-dimensional
(2D) simulations with the hybrid particle-in-cell (PIC) code
BZOHAR (kinetic ions and Boltzmann electrons).® It has then
been observed in one-dimensional (1D) simulations using
similar hybrid codes.'*"? Experimental evidence of the AW
parametric decay was reported recently in Refs. 23 and 24.

In this paper, we discuss in detail the saturation of a
driven TAW, addressing, in particular, the connection be-
tween the parametric decay and kinetic effects.”” To do so,
we consider the simulation results obtained from two 1D
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codes: (i) a “full-PIC” code, in which both particle species
are kinetic, and (ii) a “hybrid-PIC” code, in which the ions
are kinetic and the electrons are described by the Boltzmann
law. For simplicity, in both codes, we consider the case of a
prescribed driver to excite the IAW and periodic boundary
conditions. This model can be regarded as an approach to
improve the understanding of the nonlinear saturation of
SBS, the coupling of the SBS-driven IAW to the incident and
scattered transverse waves being modeled by a given pon-
deromotive force having the form of a periodic traveling
wave. This simplified model makes it possible to study with
high spatial and temporal resolutions the interplay between
the particle motions and the nonlinear fluid behavior of the
driven IAW without the complications of temporal and spa-
tial growths of the transverse waves. The comparison be-
tween the results of each type of code enables us to distin-
guish the respective influence of ion and electron motions on
the nonlinear evolution of the driven IAW.

In our paper, we introduce the distinction between the
regimes that we name “weak” and “strong” drives, depend-
ing on whether the driven IAW amplitude stays below or
exceeds the wave-breaking amplitude, respectively. In addi-
tion to these two regimes of driving, we carried out simula-
tions in “short” and “long” systems, depending on whether
the decay of the driven IAW was quenched or not due to the
size of the simulation box. The length of the short system
simulation box was chosen to be just one IAW wavelength
(N,,)), so that the generation of subharmonics is forbidden. In
this case, the JAW nonlinear evolution is determined by the
harmonics generation and the kinetic effects only. The length
of the long system was chosen to be 8\, so that subharmon-
ics generation could take place. By carrying out additional
simulations with longer systems, we checked that we cor-
rectly captured the physics in the IAW instabilites.

Our paper is organized as follows: In Sec. II, we de-
scribe the hybrid-PIC code and the full-PIC codes. In Sec.
III, we present the simulation results in the regimes of weak
and strong excitations. In Sec. IV, we attempt to interpret the
full-PIC and hybrid-PIC results by comparing them with the
results obtained from a simple fluid-type description in
which the kinetic effects are modeled by nonlinear frequency
shifts. At this stage we are led to present the results of
complementary simulations carried out in a short system
with the same physical parameters as in the long one, so that
the subharmonics generation is quenched. In Sec. V, we in-
vestigate the parametric decay instability for an [AW ampli-
tude characteristic of what was observed in the simulations.
In Sec. VI, we describe the kinetic effects by inspecting ion
and electron phase spaces, and we make some connection
with subharmonics generation. Section VII concludes the pa-
per.

Il. SIMULATION MODELS

We carried out simulations with two different PIC codes;
a full-PIC code, where both particle species were treated
kinetically, and a hybrid-PIC code, with kinetic ions and
Boltzmann electrons. The equations of motion for the par-
ticle species s=e,i described kinetically read
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dtxj = vj and mxdtvj = - qsax((P - (Pp,s)|x:xj’

where x; and v; stand for the particle position and velocity,
and ¢, and m, for the charge and the mass, respectively, with
q,=—e for the electrons and g;=Ze for the ions. The full-PIC
code is a prescribed driver version of the code used in the
context of SBS in Ref. 4 (and references therein); similarly,
the hybrid-PIC code is a prescribed driver version of the 2D
code “KOLIPIC,”26 which is a development of the earlier 1D
version documented in Ref. 27. All the simulations presented
in this paper correspond to the case of a prescribed driver
corresponding to a given potential ¢, ,. The potential ¢, ; is
taken equal to zero. The potential ¢ is the self-consistent
electrostatic potential, satisfying the Poisson equation

ed-p=e(n,—7Zn;).

We use periodic boundary conditions for the particles and
fields in all the cases discussed in this paper.

Full-PIC codes require a high time resolution for the
electron motion. Hybrid-PIC codes are used in most of the
simulations involving IAWs, 2% pecause they require
only the temporal resolution of the IAW time scale. The elec-
tron density in hybrid-PIC codes is given by the Boltzmann
law

ne(‘P) ="nNeo eXP[e(‘P - (Pp,e)/Te] .

Henceforth we consider ¢, , as a prescribed driver, the form
of which being given by ¢, ,= ¢, sin(k,z— ,,t+const). The
frequency w,, and wave number k,, satisfy the IAW disper-
sion relation, = wp (k) = cyok[ 1/ (1+E2NE,)
+3T,/ZT, ",  with  c,o=(ZT,/m)"> and  Ap,
= (g T,/ e’n,y)""* denoting the Debye length.

It should be noted that one of the main differences be-
tween each type of codes from the computational point of
view, besides the significantly smaller time step in the full-
PIC simulations, is the way of solving the Poisson equation.
In the hybrid-PIC code, this equation has to be regarded as a
nonlinear equation for the potential ¢ which has to be solved
iteratively (following, e.g., Ref. 6). In the full-PIC simula-
tions, the electron density is determined from the electron
positions, so that the Poisson equation is simply a linear
equation for ¢, which has to be integrated for given densities
n, and n;.

In the hybrid-PIC simulations, the driver is ramped in
time up to its maximum value over a few acoustic periods.
We checked that our results are very weakly dependent on
the rise time of this ramp. In the full-PIC code, the driver
was fully switched on from the initial time.

lll. IAWS DRIVEN IN A LONG SYSTEM: FULL-PIC
VERSUS HYBRID-PIC RESULTS

In this section, we examine two reference cases, repre-
senting the regimes of strong and weak excitations of the
IAWs. The simulation parameters were chosen in a way to
differentiate between the weak and strong ion kinetic effects,
in the sense that the IAW interacts with a small number of
resonant ions or it gives rise to wave breaking. Let us recall
that in the case of a monochromatic IAW characterized by a

Downloaded 12 Apr 2010 to 150.203.243.34. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



112308-3 Electron and ion kinetic effects in the saturation...

potential o= ¢,, sin(k,,z— w,,t), the ion kinetic effects are able
to play some role only if the ion bounce frequency wy;
= w,,|$,,|'"* is larger than the linear Landau damping 7,
where ¢,, stands for the amplitude of the dimensionless po-
tential ¢,,=eq,,/T,. In the regime wy; > y;, the ion velocity
distribution function is nonlinearly modified from its initial
Maxwellian form. The strong kinetic effects occur in the
wave-breaking regime defined by the condition dn,,/n,
> én/n,lwg, the wave-breaking limit  &n/n,o|wg being

given by15
1{ 1 37\ 12 37\ 122
(ot 2 ()T
w2l \1+k\p. ZT, ZT,
(1)

on
Neo

Here on,,/n., = ¢, denotes the relative density-fluctuation
amplitude associated with the IAW. We define as weak exci-
tation the regime where the amplitude ¢,, of the driven IAW
stays always below the limit (1). In this regime the perturba-
tive analysis made by Morales and O’Neil'® holds and the
kinetic effects reduce to the nonlinear frequency shift and the
nonlinear wave damping. In the strong drive regime, the
wave amplitude reaches the wave-breaking limit during the
growth phase and no perturbative analysis can be applied.

We selected the following set of normalized parameters
for our base line simulations: kfn)\%)e=0.l and the temperature
ratio 7;/ZT,=0.09, for instance representative of laser-
plasma interaction in a plasma characterized by n,/n.~0.1,
T,~3 keV, and k,, ~ 2k, kq denoting the incident laser wave
vector and n. being the electron critical density. The corre-
sponding value of the ion Landau damping is 7;;/w,
~0.07. In the full-PIC simulations, we took m;=1836m,
and the numerical parameters were w,,Ar=0.1 and Ax
=0.3\p, (the ions being pushed every five time steps ). In
the hybrid-PIC simulations, they were ,Ar=0.1 and
Ax=03\p..  Here, w,=(’n,/em,)"> and o,
= (Z%¢*n;o/ €ym;)""* denote the electron and ion plasma fre-
quencies, and A¢ and Ax are the elementary time and space
steps. The number of particles per cell was 200 in the hybrid-
PIC simulations and 1000 for each species in the full-PIC
simulations.

A. Weak drive regime

We first discuss the typical case of weak drive, corre-
sponding to the driver amplitude ¢,=e¢,/T,=5>% 107> and
to the long system, the length of the simulation box being
eight times the driver wavelength, \,,=2/k,,. The temporal
evolution of the normalized fundamental Fourier component
&,, of the potential associated with the driven IAW is illus-
trated in Fig. 1 from both the full-PIC and the hybrid-PIC
simulations.

We denote by #,,,x the time at which the amplitude of the
fundamental component ¢,, reaches its maximum, denoted
as ¢, max- It can be seen in Fig. 1 that, past the initial phase

of monotonic growth, ¢,, decays with irregular oscillations
in both types of simulations, to reach a low asymptotic level
fbm: 1% —2%, while the driver is still switched on. It should
be noted, on the other hand, that 7, is shorter, and the
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FIG. 1. Amplitude of the fundamental component ¢,, vs time, for a driver
amplitude ¢,=0.005 (“weak” drive), k2\3.=0.1, and T;/ZT,=0.09. The
solid line: full-PIC simulation; the dashed line: hybrid-PIC simulation. Sys-
tem length is 8\,

asymptotic state is reached much earlier, in the case of the
full-PIC simulation as compared with the hybrid-PIC simu-
lation.

Figure 2 shows snapshots of the corresponding Fourier
spectrum of the electrostatic potential for modes in the inter-
val 0 <k<4k,, in the case of hybrid-PIC simulations. In the
initial phase <t,,,,, the driven IAW fundamental component
(k=k,,) grows to large amplitudes, thus giving rise to a large
second- (k=2k,,) and third- (k=3k,,) harmonic amplitudes,
as can be seen in panels (a) and (b). It then drops to lower
level when the subharmonics generation (k<k,,) takes place
[panel (c)]. This subharmonics generation develops until the
largest amplitudes of the spectrum components correspond to
modes with the longest wavelengths, N~ (7—-8)\,, [panel
(c)]. Figure 3 shows the counterpart of these results in the
case of full-PIC simulations. The comparison shows that the
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FIG. 2. Snapshots of the IAW Fourier spectrum at four times w,,#=250 (a),
600 (b), 1000 (c), 2000 (d). The parameters are the same as in Fig. 1, the
hybrid-PIC simulation.
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FIG. 3. Snapshots of the IAW Fourier spectrum at four times w,,;t=250 (a),
600 (b), 1000 (c), 2000 (d). The parameters are the same as in Fig. 1, the
full-PIC simulation.

initial phase during which the spectrum is mainly composed
of the fundamental component and of its harmonics is much
shorter in the full-PIC case; in particular, panel (b) exhibits
already subharmonics generation for k around k,,, a feature
that could be seen only at later times [Fig. 2(c)] in the
hybrid-PIC case. The comparison between panels (c) and (d)
in Fig. 3 indicates that the spectral density does not vary
much as a function of k in the interval k,,/2 <k,, <3k,, by
contrast with the hybrid-PIC results [Fig. 2(d)]. Finally, it
should be pointed out that for both types of simulations, the
driven mode amplitude (k=k,,) does not exceed the neigh-
boring mode amplitudes, in the long-time behavior, although
the system remains driven.

B. Strong drive regime

In the case of strong IAW drive, ¢,=0.1, the time evo-
lution of the fundamental Fourier component ¢, shows a
striking difference between the full-PIC and the hybrid-PIC
simulations, as can be seen in Fig. 4. In this case, the AW
amplitude exceeds the wave-breaking limit (1), ¢,|ws
= n/n,lwp=0.14 for the present parameters. While in the
full-PIC description the driven TAW overshoots the wave-
breaking limit and quickly drops to much smaller values with
significant subharmonics generation; in the hybrid-PIC simu-
lation the mode amplitude reaches the wave-breaking limit
and then stabilizes slightly above this level. In Fig. 4 we also
plot the second-harmonic amplitude ¢,, as a function of
time. It is interesting to remark that at early times there is a
significant difference in the ¢,,, amplitudes between the two
types of simulations, while the ¢,, amplitudes are about the
same. This result will be interpreted in Sec. IV as due to the
nonlinear frequency shift due to electrons. By contrast, in the
long-time limit, the ¢,, amplitudes are comparable in the
two types of simulations, whereas the ¢,, amplitudes are
significantly different. We interpret the level of the ¢,,, am-
plitude in the PIC simulation as due to the fact that it is
enslaved to ¢,,, so both are small; concerning the hybrid-PIC
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FIG. 4. Amplitude of the fundamental component ¢,, vs time, for a driver
amplitude ¢,=0.1 (strong drive), with k2\3.=0.1 and 7,/ZT,=0.09. The
solid (dashed) line is the result of the full (hybrid)-PIC simulation. System
length is 8\,,.

simulation we will interpret in Sec. IV the smallness of ¢,,,
as due to the nonlinear frequency shift due to strong ion
kinetic effects.

In Fig. 5 we show snapshots of the corresponding Fou-
rier spectrum of the electrostatic potential in the case of
hybrid-PIC simulations. At all times one can see a relatively
large value for the fundamental amplitude ¢,,, some harmon-
ics generation at early times, but only a negligibly small
level of harmonics and subharmonics for long times. The
driven IAW grows until it reaches a stable equilibrium. By
looking at the ion phase space, this steady-state behavior is
seen to take place together with trapping of a large number
of ions, which is a reminiscence of a stable Berstein-Greene-
Kruskal (BGK) mode. As will be seen in Sec. V, such a
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FIG. 5. Snapshots of the Fourier spectrum at four times w,;#=70 (a), 150
(b), 400 (c), 1500 (d). The parameters are the same as in Fig. 4, the hybrid-
PIC simulation.
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FIG. 6. Snapshots of the Fourier spectrum at four times w,;=70 (a), 150
(b), 400 (c), 1500 (d). The parameters are the same as in Fig. 4, the full-PIC
simulation.

stabilization for high amplitude is interpreted consistently
with the stability analysis of the IAW decay in the presence
of ion kinetic effects.

By contrast, no similar stabilization of the fundamental
component ¢,, is observed in the full-PIC simulation. Even if
the IAW amplitude exceeds the wave-breaking limit in the
phase of initial growth, it decreases rapidly to much smaller
values at longer times. In Fig. 6 we plot snapshots of the
Fourier spectrum of the electrostatic potential corresponding
to the full-PIC simulations. It can be seen that the temporal
decay of the fundamental component, together with the tem-
poral growth of its subharmonics, is similar to what was
observed in the case of weak excitation (Fig. 3), but they
occur on a shorter time scale. The final spectrum is roughly a
uniform function of k, with the level of |¢,|=0.02. By look-
ing at the ion phase space, it can be seen that the subharmon-
ics generation takes place together with a smooth modifica-
tion of the distribution function corresponding to a diffusion
in the velocity space. These features will be discussed in
more detail in Sec. VL.

We have carried out other simulations with higher driver
amplitudes than for our base line strong drive simulation,
and we found that the scenario remains essentially the same.
The differences between the full-PIC and the hybrid-PIC
simulations appear to be more pronounced for stronger drive.
In the case of hybrid-PIC simulations, the fundamental mode
amplitude ¢,, can significantly exceed the wave-breaking
limit, and then it stays at a level as high as |¢,,|=dn,,/n,
~0.2. In this regime, a large population of ions is trapped.
As in the case of the base line strong drive simulation, there
is neither significant harmonics growth nor subharmonics
generation, with a few exceptions when the subharmonics
appear for a transient stage. In the full-PIC simulations, the
amplitude of the fundamental component ¢,,, after the initial
secular growth, saturates at a level almost independent of the
driver. For example, in the case of ¢,;=0.25, the fundamental
mode slightly overshoots the wave-breaking limit, ¢,
~0.15, and then it drops to much smaller values over a few
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FIG. 7. Amplitude of the fundamental component ¢,, vs time, for a driver of
amplitude ¢,=0.1, kK2\3.=0.1, and T;/ZT,=0.03.
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ion sound wave periods. This process is accompanied by a
subharmonics generation and a strong diffusion in the ion
velocity space.

C. Lower ion temperatures

We carried out additional simulations with T,/ZT,
=0.03 in order to investigate the role of the ion temperature.
This lower-temperature ratio leads to two main differences
from the previously discussed cases: (i) the ion Landau
damping is much smaller, so that the IAW damping is due to
the electrons in the full-PIC simulations, with vy;/w,,
=0.012; (ii) the ion wave-breaking limit, |dn/n,|wg~ 0.22,
is significantly larger. Nevertheless, the scenarios, for each
type of simulations (full PIC or hybrid PIC), and for each
kind of drive (weak or strong), remain essentially similar to
those discussed before for our base line simulations. Simply,
the IAW grows to larger amplitudes, so that the fluid-type
effects, such as harmonics generation, are more pronounced
in the initial phase of secular growth, before the wave break-
ing occurs.

For the simulations carried out in the weak excitation
regime, the amplitude of the driven wave reaches amplitudes
of the order of ¢,,=0.04—0.05, then decreases to the level
¢,,=0.02-0.03, for both hybrid-PIC and full-PIC simula-
tions. The main difference is that the IAW amplitude de-
creases on a considerably shorter time scale in the full-PIC
case, demonstrating again the importance of the electron ki-
netic effects. In the hybrid-PIC case, the amplitude of funda-
mental component stays longer time at high level providing
more efficient harmonics and subharmonics generations.

In the hybrid-PIC simulation carried out in the strong
excitation regime, we observe the initial phase of secular
growth of the driven IAW, followed by small oscillations at
the level of ¢,,=~0.1-0.2. In the full-PIC simulation, the
amplitude of the driven IAW, displayed in Fig. 7, grows
secularly in the first phase when the harmonics generation
takes place. At the time of wave breaking, subharmonics
generation occurs, initially characterized by a spectrum lo-
calized around the half harmonic k=k,,/2. Then the spectrum
extends to the whole range k<k,,, and the driven IAW am-
plitude drops to very small values. These results will be dis-
cussed in more detail in Sec. VI in association with the
analysis of the ion phase space. It will be seen in Fig. 16 that
the spatial period doubling associated with the half-
harmonics generation appears very clearly in the ion phase
space.
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FIG. 8. Electron distribution function showing subsequent flattening at
times wpit=0, 180, and 1500. The parameters are the same as in Fig. 4, the
full-PIC simulation.

D. Electron distribution function in full-PIC
simulations

The main feature concerning the electron kinetic effects
is the flattening of the electron distribution function in the
domain of small velocities v=< v,., where vy,.= \J"Tg/ m, is the
electron thermal velocity (see Fig. 8). The higher the driver
amplitude, the more pronounced is the flattening. In order to
quantify this result, we approximated the electron distribu-
tion by the hyper-Gaussian function,

F15(0) = iz—l—l/ar—l(l)exp{_ l(ﬂ) ]’ )
OUthe a 2 OUhe
characterized by two parameters; the exponent a and the
width o in velocity space. The Maxwellian distribution func-
tion corresponds to =2 and o=1. In the weak drive regime,
a and o remain very close to the Maxwellian limit for the
entire duration of the simulation, with a=2.02-2.04 and
o=1.01-1.02. In the strong drive regime, the parameters «
and o initially increase rapidly to @=2.6 and o= 1.2 within
the period of time w,;t<<400. Then they grow more slowly
until they reach @=2.85 and o=127 at the time w)

~ 1500.

This latter value for o corresponds to a very significant
modification of the IAW spectrum and damping. Let us de-
fine by wy, (k) the solution to the dispersion relation in
which the electron susceptibility is computed in terms of the
electron distribution function (2) with the parameters a and
o measured in the simulations. Then for the frequency shift

Swyin (k) = wyiy (k) — wy (k) one finds at lowest order
Swnn Jkego= a2V a T (1/a)/T(1 - Va)]"* 1. (3)

In Table I, we reported the values of the two parameters «
and o obtained by a best fit of the electron distribution func-
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tion f,(v) measured at the final time of our simulations. We
have also reported the values of the corresponding frequency
shift (3). It can be seen that the interaction of the IAW with
electrons leads to an increases of the mode frequency and of
its phase velocity. The positive sign of dwy, . can be easily
understood as follows: the flattening of the electron distribu-
tion function can be viewed as an increase of the Debye
length, from which follows expression (3) for dwy, .. The
following sections are devoted to a detailed discussion of the
modeling of the kinetic effects.

IV. FLUID-TYPE MODELING OF THE KINETIC
EFFECTS

The modifications of the electron and ion distribution
functions caused by the existence of a large amplitude [AW
lead to changes in the dispersion relation, which becomes a
function of time. We denote by wy,(k) and by —v;,(k) the
real and imaginary parts of the instantaneous solution to the
modified dispersion relation. Consistently with the definition
of the nonlinear electron frequency shift (3) introduced in the
previous section, we define more generally the nonlinear fre-
quency shift Swy, as dwy, (k) = wy, (k) — w; (k).

In Ref. 25, we examined the possibility of modeling the
full-PIC and hybrid-PIC simulation results by means of a
fluid-type description consisting in two coupled equations for
&,, and ¢,,,. In the initial phase of monotonic growth of the
fundamental component ¢,,, the kinetic effects were mod-
eled by the nonlinear frequency shift dw,,= ,, 7| d,,|""?, with
n=mn;+ 7, accounting for the contributions of ions and elec-
trons. The hybrid-PIC simulations correspond to 7,=0. The
damping of the fundamental mode and its harmonic were
modeled by the simple time dependence 1v,,(r) = vy, (k,,)/(1
+t/7;) and v, ()=v,(2k,)/(1+t/7;), where Ty
=2/ w,,)|2¢,,|7"* is the ion bounce time.

In the case of a monochromatic wave and the initial
co?éiition (IC) problem, the parameter 7; was predicted to
be

U;C == 2-2\’66'50((,0,"//("1)2(72“](‘,'0. (4)

This expression leads to a negative value for n§C in the limit
Uph= 0,/ k,y > vy, Which is the case. Here, fj denotes the
initial ion distribution function and w,;=\7;/m, is the initial
thermal velocity. A similar expression was then derived in
the case of a driven system with a slightly different
coefficient.'” A positive frequency shift, niC:O.22 \J’E(l
+k2N\3,) 2, was predicted in Ref. 31 for what concerns the

TABLE 1. Coefficients @ and o defining the electron distribution function (2) measured in the simulations at
their final time. We have also reported the corresponding relative nonlinear frequency shift dwy;, ./kcy, of the
IAW frequency. The last two columns indicate the maximum value ¢, ,, Of the driven IAW amplitude reached
during the simulation and the amplitude ¢, .,q at the final time.

Ti/ZTe ¢d @ o 5wkin,e/kcso ¢m,max ¢m,end
0.09 0.005 2.041 1.018 0.018 0.04 0.01
0.09 0.1 2.850 1.268 0.24 0.18 0.02
0.03 0.005 2.059 1.027 0.028 0.04 0.02
0.03 0.1 3.55 1.445 0.37 0.24 0.01

Downloaded 12 Apr 2010 to 150.203.243.34. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



112308-7 Electron and ion kinetic effects in the saturation...

electrons. However, this result was not confirmed later.'” In-
dependently of the various expressions for the electron non-
linear frequency shift, we believe that the flattening of the
electron distribution function for v<<y,, as observed in our
simulations, gives rise to a positive frequency shift. This has
been discussed in Ref. 9 and it is in agreement with the
values of dwy, (k) reported in Table 1.

In this section, we investigate whether it is possible to
determine a value of the parameter 7 such that our simula-
tion results, during the initial phase of monotonic growth,
could be correctly described by coupled-mode equations in
which the kinetic effects are simply modeled by the nonlin-
ear frequency shift dw,(k) = w; (k) 7] d,,|'"%, and by the time-
dependent damping vy, ()= v, (k)/(1+¢/7;). In the next sec-
tion, we will consider the more difficult question concerning
whether this simple coupled-mode description can be used to
determine the time at which the subharmonics generation
takes place.

The coupled-mode equations describing the evolution of
amplitudes of the fundamental component ¢,, and its second
harmonic ¢,,, can be easily derived from the Korteweg—de
Vries equation for an ion acoustic wave. They can be written
as

[al + ‘)/m(l) + iﬁwkin](ﬁm == iwm(abm&:q + ¢d/4) 5 (5)
(9, + You(1) + 2i Swyin + i 0w4icy] oy = — i, By, (6)

where dwgigp= w0 (2k,,) —2wy (k) =3k*\.,, denotes the fre-
quency mismatch caused by the IAW dispersion and dw;,
=w,,7|¢,|'"*> denotes the nonlinear frequency shift corre-
sponding to the fundamental component. Equation (6) may
be simplified, because the second-harmonic amplitude ap-
pears, in the numerical simulations, to be strongly enslaved
to the fundamental component. This allows us to neglect the
time derivative and the damping in Eq. (6) and to approxi-
mate the second harmonic by ¢, =@>/A, with A,
=3k*\5.~27|h,|">. One then obtains a single nonlinear
differential equation for the fundamental component,

([(?t + ’)/m(t) + iawnl]&m == iwmd)d’ (7)

where Swy(¢h,,) = 0, (1| P> +|bul>/Ay) is the total nonlin-
ear frequency shift. This equation can be further simplified
by noticing that the damping and the second-harmonic con-
tribution in the nonlinear term play a role only at the moment
when the amplitude ¢,, is close to its asymptotic value, that
we denote as (Zm’sm. For this reason, we replace ¢,, by aﬁm’sat
in the expressions of 7;, appearing in the definition of v,,(¢),
and in the expression of A,, which becomes then A,
=32 Np. =27 Pl 2. The value of @, g is known from
the numerical simulations.

Equation (7) contains only one free parameter 7. This
single parameter can therefore be determined accurately by
finding the solution to Eq. (7) which represents the best fit of
the amplitude ¢,,(¢) provided by the numerical simulations.
Moreover by comparing the solution to Eq. (7) with the
simulations carried out in the short simulation box, where the
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FIG. 9. Amplitude of the fundamental component ¢,, vs time, for (a) [top
left] ¢,=0.005, the hybrid-PIC simulation; (b) [bottom left] ¢,=0.1, the
hybrid-PIC simulation; (c) [top right] ¢,=0.005, the full-PIC simulation.
The result of the simulations is compared with the solution of the model
equation (7) (solid line). (d) [Bottom right] Comparison between the hybrid-
PIC and full-PIC simulations for ¢,=0.1. The other parameters are k*\3,
=0.1 and 7;/ZT,=0.09. All simulations are done in a short box of the length
of 1N,,.

subharmonics generation is quenched, we may extend the
study of the kinetic effects on a significant longer time. By
proceeding along this way we were able to improve the ac-
curacy of 7. We numerically integrated Eq. (7) for a given
value of 7, taking <7’m,sat equal to the saturation amplitude of
¢,, observed in the simulations carried out in the short box.
Then, we varied % in order to optimize the fit of ¢,,(z). The
results of these best fits are displayed in the four panels of
Fig. 9, describing the hybrid-PIC and the full-PIC simula-
tions, for the weak and strong drive regimes. They are dis-
cussed in detail in Sec. IV A. At this point, it is worth to note
that the differences which can be clearly observed in panels
(a) and (b) between the hybrid-PIC and full-PIC simulation
results in the weak drive regime can only be attributed to the
electron kinetic effects.

Finally, we checked a posteriori the consistency of our
procedure as follows: having determined the value of 7 from
the best fit of ¢,,(¢), we computed the corresponding predic-
tion for the second-harmonic amplitude ¢,,,(#) at the time of

saturation, denoted as (?>2m,sat(t). This quantity is predicted to
2

be given by ¢y = ‘Zm,sat/ A, ¢ Within the coupled-mode
description. We therefore consider that the coupled-mode
equations [(5) and (6)] and valid descriptions of the simula-
tion results, whenever (i) the best fit of ¢,,(¢) is good and (ii)
the prediction _31,5;11/ A, i for the asymptotic value of the
second-harmonic amplitude <7’2m,sat is close to the numerical
simulations.

A. lon frequency shift from the hybrid-PIC
simulations

In the weak excitation regime and in the case of hybrid-
PIC simulations, the results displayed in Fig. 9(a) indicate
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| @pn.satl = 0.09. The best-fit procedure explained in the intro-
duction of this section leads to #,=—0.13. This value was
obtained by taking the ion bounce time w,;7,;=100 and
v/ ©,,=0.05, consistent with the numerical simulation val-
ues. Inspection of Fig. 9(a) shows that the best fit is good:
the results of the hybrid-PIC simulations agree very well
with the solution to Eq. (7). The corresponding value for the
parameter A, is A, ,=0.35, leading to the result |y,
=0.025, which is found to be in good agreement with the
numerical simulation results. We may therefore conclude to
the validity of the fluid-type description in this case with
7,=—0.13. It is interesting to compare this result with the
theoretical prediction (4), leading to a higher value of 7,~
—0.68. We interpret the difference with our best fit by the fact
that Morales and O’Neil’s theoretical prediction was derived
in the context of an initial value problem and not in the case
considered here of an externally driven system.

We proceeded in the same way for the strong excitation
regime and in the case of hybrid-PIC simulations. The simu-
lation results displayed in Fig. 9(b) indicate |¢,, o =0.15,
which is close to the wave-breaking limit. The best-fit pro-
cedure leads to 7,=-0.5, corresponding to the nonlinear fre-
quency shift dwy;,;=~-0.2. This value was obtained by tak-
ing the ion bounce time w,;7,;=50 and vy;/®,=0.05,
consistent with the numerical simulation values. Inspection
of Fig. 9(b) shows that the best fit is indeed very good. The
value of the parameter A, is A, ,=0.7, leading to the pre-

diction |¢,,, ¢|=0.03, which is found to be in reasonably
good agreement with the numerical simulation results. Thus,
similar to the weak excitation regime, we may conclude to
the validity of our fluid-type description in this strong exci-
tation case, the value of 7; being now —0.5. It could seem
surprising that two valid best fits do not lead to the same
value for the parameter 7;, when the physical parameters
(besides the driver amplitude) are identical in each of the
simulations. We interpret this result by the fact that in the
strong drive regime, ion wave breaking occurs very early in
the simulations, so that the ion distribution function is deeply
modified in the velocity range close to the IAW phase veloc-
ity.

Thus, our results seem to show that the fluid-type equa-
tions in which the kinetic effects are modeled by a nonlinear
frequency shift proportional to the square root of the wave
amplitude, remain a valid description in the strong drive re-
gime, even though there is not yet any theory available to
predict the value of the parameter 7;, because (i) the excited
IAW is externally driven and (ii) there is an effective heating
caused by the strong kinetic effects. Further work is obvi-
ously needed, in particular, concerning the IAW damping in
the case of ion tail formation. The ion kinetic effects and
their interplay with the IAW damping are discussed in more
details in Sec. VL.

B. Partial validity of the fluid-type description for the
full-PIC simulations

In the weak excitation regime and in the case of full-PIC
simulations, the results displayed in Fig. 9(c) indicate

| @p.satl =0.05. The best-fit procedure leads to 7=0. This
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value was obtained by taking the ion bounce time w,;7;
=100 and vy;/w,,=0.05. Inspection of Fig. 9(c) shows that
the best fit seems to be very good. However, it is inconsistent
with the second-harmonic amplitude. The value of the pa-
rameter A, is A, =0.3, leading to the prediction |, .
=0.0008, which is lower by a factor of 2 than the simulation
result [y, | =0.0018 (this value being obtained by averag-
ing over several temporal oscillations).

In order to gain some insight concerning the origin of the
failure of the fluid-type description, we cross-checked the
value of # determined by the best-fit procedure, with the
expression 7=m;+ 7, in which two parts were evaluated as
follows: concerning the ion contribution, we used the result
7;=—0.13 found in Sec. IV A for the weak drive regime;
concerning the electron contribution, 7, was obtained from
the direct computation of the nonlinear frequency shift
dwyip . following the procedure outlined in Sec. III [Eq. (3)].
The value dwy;,,=0.018w,, reported in Table I leads to 7,
=0.09. Consequently, the total frequency shift OJwy,
= 0, ] Bn.sall * + Sy . = —0.01w,, agrees very well with the
value dw,;,=0 obtained from the best-fit procedure. There-
fore, we must conclude that the fluid-type description in
which the kinetic effects are modeled by a nonlinear fre-
quency shift can describe only qualitatively the initial phase
dynamics in the full-PIC simulations, even though there is a
good agreement between the best-fit procedure to determine
7 and the direct computation of the frequency shift from the
distribution function.

In order to evaluate the contribution of the subharmonics
in the temporal evolution of the IAW amplitude, other simu-
lations have been performed with the short simulation box of
length A,,. The results of the hybrid-PIC and full-PIC simu-
lations in the strong drive regime are presented in Fig. 9(d).
For both types of simulations, the system evolves in such a
way that asymptotically it reaches a very well-defined equi-
librium, with a large fundamental component amplitude. In-
spection of the ion phase space shows the existence of a
large population of trapped ions. We could not find any sat-
isfactory best fit to the full-PIC simulations in this strong
drive regime.

V. ION ACOUSTIC DECAY IN THE PRESENCE OF
KINETIC EFFECTS

In this section we investigate whether the fluid-type de-
scription presented in Sec. IV makes it possible to determine
the characteristic time scale 7,,,, on which the subharmonics
generation takes place. This fluid-type description contains
two effects: (i) the quadratic fluid nonlinearity, such as in the
Korteweg—de Vries equation, and (ii) the nonlinear frequency
shift modeling the kinetic effects. We therefore consider our
base line simulations carried out in the long simulation box
and investigate whether the time #,,, can be interpreted as
the characteristic time for the development of this parametric
decay instability.

The dispersion relation for the parametric IAW decay
has been derived in Ref. 32. It considers the stability of a
stationary weakly nonlinear IAW (¢,,, ¢,,,) in the presence
of a frequency mismatch dw,;,. This dispersion relation de-
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FIG. 10. Normalized growth rate y/w),; vs the detuning parameter 7 for

k*A\3,=0.1 and for three values of the the AW amplitudes ¢,,=0.015, 0.04,
and 0.09.

scribes two types of TAW instabilities associated with the
fluid nonlinearity: the modulational instability in the case of
the positive nonlinear frequency shift, >0, and the decay
instability (the so-called two-ion decay) in the opposite case,
7<0. We generalize this result by considering dw,; =
—Swyin=—,, 7 b,,|"">. The corresponding dispersion relation
has been solved numerically. The maximum growth rate as a
function of the parameter 7 is shown in Fig. 10 for k,zn)\zDe
=0.1 and for three values of the IAW amplitude g@m:0.0lS,
0.04, and 0.09. The domain of the amplitudes is limited by
the condition of validity of the stability analysis ¢,
<k2\3.. It can be seen that for the largest &,, considered in
the figure, the instability growth rate is non-negligible only
in the domain of negative detuning (corresponding to the
two-ion decay) and provided that # satisfies 7> 7,,, with the
cutoff value 7,,<0. By contrast, for small ¢, the growth
rates are comparable for positive (modulational instability)
and negative (two-ion decay) detunings.

Let us first consider the weak drive regime. In the full-
PIC simulations, the fundamental component amplitude ¢,
reaches the maximum amplitude ¢,, ,,x=0.04. Taking then

&,=0.04 and =0 as found in the previous section, the
solution to the dispersion relation leads to the growth rate y
which is smaller than 10‘3w,,,-. The short saturation time
tnax = 300«);1-l observed in the full-PIC simulations cannot be

explained by such an instability. By contrast, in the hybrid-
PIC simulations the fundamental component amplitude ¢,, is
of the order of the maximum amplitude ¢,, ,,,=0.07. As-
suming then 7=-0.13, as found in the previous section, one
finds the growth rate y=8X 10‘3(1),,[». This value is in good
agreement with the saturation time 7,,,, = 700(0;,-l observed in
the hybrid-PIC simulations and corresponding to a gain fac-
tor of a few units. These results confirm our previous find-
ings concerning the weak drive regime: (i) the ion kinetic
effects appear to be properly modeled by the nonlinear fre-
quency shift; (ii) accepting this fact, one must conclude that
the electron kinetic effects cannot be reduced to a simple
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nonlinear frequency shift and involve another process which
makes the TAW more unstable than in the case where they
are ignored.

In the strong drive regime, the driven IAW asymptotic
behavior differs significantly between the two types of simu-
lations, as can be seen in Fig. 4(a). The full-PIC simulations
lead to the same scenario as in the weak drive regime: after
an initial secular growth, at the time 7,,,, = 80(1);1»1 &,, reaches
the large value @, ,,=0.15. Past this time f,,,, the funda-
mental component amplitude decreases with irregular oscil-
lations to the low level ¢,,=0.02. By contrast, in the hybrid-

PIC simulations, ¢,,, past a quasimonotonic growth, reaches

a quasisteady state, with ¢,,~0.15. This value of ¢,, being
larger than k>3, this case is in principle outside the domain
of validity of the stability analysis. However, even if we do
not have a fully quantitative explanation of the dramatic dif-
ference between the full-PIC and hybrid-PIC results, we are
able to interpret qualitatively this difference from the general
tendency of the dependence of the instability growth rate as
a function of the parameter 7. Indeed, as mentioned above,
Fig. 10 shows that the driven IAW is predicted to be stable
whenever 7 is negative, with 7<<7,,. In the case of hybrid-
PIC simulations, we estimated 7~—0.5 in the strong drive
regime. In the case of full-PIC simulations, we did not find a
satisfactory estimate of 7. However, we may expect that the
electron kinetic effects give rise to a positive nonlinear fre-
quency shift, so that, as compared to the hybrid case, the
absolute value of 7 is reduced, or even 7 is positive. We can
thus interpret the difference between the hybrid-PIC and the
full-PIC simulations by associating this difference with the
value of the parameter 2. In the hybrid-PIC simulation 7 is
negative and, we hypothesize, lower than the treshold value
Neo» SO that the IAW is stable; in the full-PIC simulation # is
larger, which makes the IAW unstable.

VI. INTERPLAY BETWEEN PARAMETRIC DECAY AND
KINETIC EFFECTS

We have seen in the previous sections that the kinetic
effects may favor the parametric instability of a quasimono-
chromatic IAW. In this section, we will see that, conversely,
the decay of the fundamental component of the IAW driven
wave into subharmonics induces an additional modification
of the distribution functions, especially in the strong drive
case. We begin with examining the electron and ion phase
spaces before and after subharmonics generation. Then, we
estimate the particle heating and show that the absorbed en-
ergy goes essentially into the ions. Therefore we can attribute
the JAW damping in the strong drive case to the ion kinetic
effects. From these results emerges the following scenario:
(i) the electron kinetic effects favor the subharmonics decay
because the associated frequency shift balances partly the ion
contribution (in particular, in the regimes where the latter are
so strong that they would lead to a stable BGK-like quasi-
monochromatic wave); (i) the subharmonics decay in turn
favors diffusion in ion phase space, leading to additional
effective AW damping; (iii) the additional damping pro-
vokes an even faster decrease of the driven IAW amplitude.
The validity of these conclusions is confirmed at the end of
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FIG. 11. Electron [(a) and (c)] and ion [(b) and (d)] phase spaces at w,
=200, for the same parameters as in Fig. 4 (“strong” drive); [(a) and (b)]
short box of 1\, and [(c) and (d)] long box of 8\,

this section by examining their sensitivity on the ion-to-
electron temperature ratio and the length of the simulation
box.

A. Kinetic effects caused by the subharmonics
generation

The subharmonics generation has little effect on the ion
phase space in the weak drive case. The ions accommodate
gently to the generation of the subharmonics modes, al-
though the latter are characterized by phase velocities
slightly different than the fundamental IAW component, both
in the hybrid-PIC and full-PIC simulations.

By contrast, in the strong drive case, the subharmonics
generation gives rise to important additional ion kinetic ef-
fects, namely, a strong diffusion in phase space and a tail
formation in the distribution function. The snapshots of the
electron and ion phase spaces are shown in Figs. 11-13. In

R s e
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FIG. 12. Electron phase space (a) and ion phase space (b) at w,;7=500, for
the same parameters as in Fig. 4 (strong drive), box length is 8\,
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FIG. 13. Electron and ion phase spaces at w),t=1480, for the same param-
eters as in Fig. 4 (strong drive); [(a) and (b)] box length is 1X,, (“short™ box)
and [(c) and (d)] box length is 8\,,.

order to isolate the effects associated with the subharmonics
generation we compare the results of a periodic simulation
carried out in a short simulation box of the length A, for
which the parametric decay is quenched, with those obtained
with a long simulation box, 8\, for which harmonics gen-
eration can take place. The results corresponding to initial
and late times are presented in Figs. 11 and 13. The results
corresponding to the intermediate time w,;r=500 are dis-
played in Fig. 12 for the long box only because there are no
significant differences for the short box.

Figure 11 shows a snapshot of electron and ion phase
spaces at the early time w,;#=200. For both simulations one
can see a strong ion trapping at wave amplitudes which are
above the wave-breaking limit. Spatial periodic modulations
can also be observed in the electron phase space. For later
times, the simulations carried out in the short simulation box,
for which the subharmonics generation is quenched, do not
show any significant changes. By contrast, the simulation
carried out in the long simulation box, for which the subhar-
monics generation is allowed, exhibits, at later times, the
structures characterized by wavelengths longer than the fun-
damental wavelength \,, (see Fig. 12), while the driven IAW
amplitude decays to a small value. At the late time w);f
=1480, it can be seen in Fig. 13(d) that there is no well-
defined wavelength in the ion phase space in the long box
simulation. This fact can be merely understood as the conse-
quence, in phase space, of the broad IAW spectrum displayed
in Fig. 3. Moreover, in panel (c) one can see a strong diffu-
sion in the ion velocity space, in the velocity range [0,2] c,.
The phase spaces shown in panels (a) and (b), corresponding
to the simulations carried out in the short box, are almost
identical to those of Fig. 11 for early times, and the driven
TAW amplitude remains large. Thus, the comparison between
panels (b) and (d) demonstrates clearly that indeed it is the
subharmonics generation which gives rise to such a strong
diffusion in the ion velocity space.

The ion velocity distribution functions shown in Fig. 14
demonstrate that the ion diffusion leads also to a significant
ion tail formation. At the early time w,#=200, there is no
significant difference between the simulations with the long
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FIG. 14. Ion distribution function f(v;) for the “short™ box (dashed line),
and the 8)\,, box (solid line) at w,,z=200 (a) and 1480 (b) logarithmic scale.
The parameters are the same as in Fig. 4 (strong drive).

and short boxes. Both curves in panel (a) display the same
features characteristic of partial particle trapping (see Ref.
33), with a small dip in the distribution function around the
phase velocity v~ 1.6¢,, associated with a small maximum
at v=2.2c¢,,, corresponding therefore to a positive slope in
the velocity range [1.6,2.2]c,,. By contrast, one can see at
the late time w,,;7=1480 [panel (b)] that the distribution func-
tion has changed for the long simulation box. The maximum
at v=2.2c,, is not as pronounced as in the early times; in-
stead, the distribution function shows a slow and regular de-
crease in the velocity range [0.8,2.2]c,,. It can also be seen
that the thermal part of f;(v) is partially depleted as com-
pared with the early time w,;t=200, indicating a significant
diffusion from the thermal part to the hot tail. Such an ion
tail is expected to result in an efficient IAW damping.

B. Particle heating and IAW damping

We have seen that subharmonics generation gives rise to
a broad wave spectrum and to an additional diffusion in the
ion velocity space. These features are significantly different
from those characteristics of the partial ion trapping in a
monochromatic wave. At the same time, the simulations
show that the ion and electron kinetic energies increase.
Therefore it is a relevant question whether this increase of
kinetic energies is associated, or not, with a damping of the
driven IAW. A wave damping is an irreversible process as-
sociated with a real heating, either of the bulk of the distri-
bution function or of its tail. By contrast, the so-called slosh-
ing motion of the particles in the wave corresponds to the
reversible process associated with the dressing of the pure
electrostatic energy of the IAW by the kinetic energy of the
particles. In this subsection, we show, by estimating the ion
and electron motions, that the electron heating is negligible,
whereas the ion thermal energy increases substantially.
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FIG. 15. [Panels (a) and (b)] Average electron kinetic energy and ion kinetic
energy per particle, respectively, normalized to the initial electron tempera-
ture vs time. [Panel (c)] Electrostatic energy for all modes vs time. Solid
line: “short™ box (no decay) results; dotted line: 8\,, box. Same parameters
as in Fig. 4 (strong drive).

Let us estimate the particle heating by subtracting the
particle sloshing energy from the whole kinetic particle en-
ergy. We recall that the energy associated with a spectrum of
IAWs is given as a sum over the wave numbers:

1% N
n OT = 2 |¢k|2k2)\2Deaw(w€)€=07 (8)
e0t e k

W=

where e=1+ yx,+x; is the real part of the dielectric function,
and x,=(k\po)? and y;=—(w*/w))(1+3k*},/ w?) are the
electron and ion susceptibilities, respectively. In Eq. (8) we
can identify three terms, W=W,j.+ V_Vslosh,ﬁ Wslosh,[. The first
one, Wepee =2 i2k2\2 ., corresponds to the normalized elec-

trostatic energy of the IAWSs; the second one, V_Vsk,sh,e
=3,|#*, is the electron sloshing energy associated with the
IAWs; the third one, Wyog=Sldy/2k2c)/ @i, is the ion
sloshing energy. The first term can also be written as W,
=(€/2) [dxE?, with E=—d.¢. In the simulations k*\3,
=0.1, therefore the first term is much smaller than the two

other ones, Wslosh,e~ Wslosh,i~ 10Welec~

The average kinetic energy of each particle species was
calculated from the PIC code data by summing up the kinetic
energies of all particles and by dividing them by the total
number of particles. According to the normalization in Eq.
(8), the initial kinetic energies are W, (0)=1 and W, ;(0)
=T;/ZT,. We define then the particle thermal energy as a
difference between the kinetic energy and the sloshing en-
ergy, namely, Wheut,e,i=WCin,e,[_ slosh,e, i The Wcin,e’ Wcin,i’
and W, are plotted in function of time in Fig. 15 for the
strong drive case and for the full-PIC simulations. The re-
sults obtained from the simulations carried out in the short
and long boxes become significantly different at time w,;f
=500, which is the time when the subharmonics are gener-
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ated (see Fig. 6). At this time, the electrostatic energy Wy,
starts decreasing in the long box simulation. The maximum

level of the electrostatic energy is Wi~ 0.01, indicating
that the relative level of the sloshing energy does not exceed
10%.

The most important observation which follows from Fig.
15 is that the ion kinetic energy W, ; increases by almost a

factor of 10: from T,;/ZT,=0.09 at the initial time to V_ch,i
=0.838 at the final time w),;#=2000 for the simulations carried
out in the long box. In the case of the short box, the increase

of the ion kinetic energy is twice less, V_chqi:O.SS at the
final time. By subtracting the ion sloshing energy, we find

that the ion thermal energy Wheat,i increases to about 0.8 in
the long box simulation, while it is about 0.4 for the short
box simulation. In both cases the ion heating corresponds to
the hot tail formation, as can be seen in Fig. 14. In the short
box simulations, the ion tail appears very early, at a time of
the order of the ion bounce time. It does not evolve any
longer afterwards, coherently with the assumption of a re-
duced damping past the ion bounce time.

The electron kinetic energy is displayed in Fig. 15(a).
One can observe a slight increase of W, . of the order of
6.5% for the simulations with a long box and of less than 4%
for the short box. These numbers are of the order of the
electron sloshing energy as explained just above. Therefore,
the variations of the electron thermal energy remain small.
Thus, although the electrons give rise to an IAW frequency
shift as large as 25% (see Table I), they do not play any
significant role in the IAW damping.

C. Decay in the “cold ion” limit

It is interesting to verify to what extent the scenario dis-
cussed in the previous sections depends on the input param-
eters, especially on the initial ion temperature. In a series of
simulations carried out with cold ions, 7;/ZT,=0.01-0.03,
very similar behaviors were observed. In these simulations,
the ion Landau damping and the ion frequency shift (4) are
negligibly small, whereas the wave-breaking limit (1) is rela-
tively high, &n/n,o|lwg~0.22 for T;/ZT,=0.03. Here, we
present the results of the full-PIC simulations, in the strong
drive regime, in the long simulation box, for the same physi-
cal parameters as those of Fig. 7, namely, ¢,=0.1, kfn)\%e
=0.1, and T;/ZT,=0.03.

The ion phase space is shown in Fig. 16. During the
initial phase [panel (a)] the driven IAW reaches large ampli-
tudes, above the wave-breaking limit, although the ion ki-
netic effects remain weak. A significant modification of the
electron distribution function (not shown here) can already
be observed, because the electrons react without any delay to
the large amplitude TAW. At the time w,z=40 [panel (b)],
the ion wave breaking takes place. An important difference
with the base line case T;/ZT,=0.09 is that the harmonics
still have significant amplitudes when wave breaking occurs.
Very quickly after the onset of ion wave breaking, subhar-
monics are generated. Around the time of five to seven ion
acoustic periods, the fundamental IAW amplitude decays to
very small values, while longer-wavelength components ap-
pear, as can be seen in panel (c). At this time, the subhar-
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parameters are the same as in Fig. 7 (strong drive).

monics energy content lies essentially in the half harmonic,
as can be seen in the ion phase space, where the wavelength
(period) doubling is clearly observed. Then, further long-
wavelength modes appear, and the scenario becomes very
similar to the one previously discussed in the case of a larger
ion-to-electron temperature ratio. In particular, a strong dif-
fusion can be seen in the ion velocity space at the end of
simulation.

D. Sensitivity with regard to the simulation
parameters

We carried out many additional simulations with the
hybrid-PIC code in order to test the sensitivity of the results
on the simulation box length and on the boundary conditions.
To do so, we first verified that the results are not changed
significantly for the box lengths of 8, 16, and 32\,,. Then, we
carried out simulations with a driver localized over the
length of 8 or 16\, within a longer simulation box of total
length of 72\,,, using boundary conditions such that the out-
going particles are replaced by thermal ones. We observed
similar results, with the subharmonics decay together with
the temporal decrease of the driven IAW amplitude. There-
fore, we consider that the periodic simulations in a simula-
tion box of at least eight IAW lengths give reliable results
applicable to larger systems.

VIl. CONCLUSIONS AND DISCUSSION

The main conclusions we may draw from our studies of
the nonlinear saturation of a resonantly driven IAW is that
the electron kinetic effects become important whenever the
nonlinear effects come into play. Therefore, the validity do-
main of the hybrid-PIC simulations is limited to very small
TAW amplitudes. Although the electrons do not interact di-
rectly with the IAWs and do not absorb a significant part of
the wave energy, the sloshing electron motion in the TAW
electrostatic field leads to a flattening of the electron distri-
bution function and, consequently, to a significant change of
the IAW dispersion. We find that for large enough driving
amplitudes, the electron distribution can be approximated by
a hyper-Gaussian function. The fluid-type description of
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IAWs in which the kinetic effects are modeled by a nonlinear
frequency shift depending on the square root of the wave
amplitude is limited to small IAW amplitudes and to the
initial stage of the IAW evolution.

Our simulations confirm the earlier results,6’10 showing
that the electron kinetic effects favor the decay of IAWs into
subharmonics. This parametric instability broadens the IAW
spectrum and provokes an efficient ion diffusion in velocity
space and a strong ion heating. It is not appropriate to take
the wave breaking as a maximum or saturation limit in the
IAW amplitude for a driven system. The excited wave can
easily exceed this limit, although only for a short time, and it
eventually evolves towards much smaller amplitudes and to
a broad spectrum. This fact is potentially of importance in
the nonlinear evolution of SBS and could help in the expla-
nation of the low-level saturation of the SBS reflectivity ob-
served in some cases.'” ™'

The results found in the present paper are limited to the
cases where collisions could be neglected. In fact, the ion
and electron collisions could restore the distribution func-
tions back to equilibrium if the collision frequency is larger
than the corresponding bounce frequency.28 In this case, the
hybrid-PIC description could be appropriate. We are cur-
rently examining the role of interparticle collisions in order
to define the limits of the hybrid-PIC model.

Our results are also limited to one spatial dimension. A
second dimension would enlarge the parameter space where
the IAW decay instability is allowed” and enhance the ion
diffusion in the phase space.33 Moreover it would make it
possible to take into account the effect of transverse
losses. 1334 Obviously, detailed comparisons are still
needed with two-dimensional hybrid and PIC codes.
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