96 research outputs found

    An Extract of Antrodia camphorata Mycelia Attenuates the Progression of Nephritis in Systemic Lupus Erythematosus-Prone NZB/W F1 Mice

    Get PDF
    Antrodia camphorata is used in folk medicine for the treatment of inflammation syndromes and liver-related diseases in Taiwan. The goal of this study was to evaluate the efficacy of the mycelial extract of A. camphorata (ACE) for the treatment of systemic lupus erythematosus (SLE) in SLE-prone NZB/W F1 mice. After antibodies against double-stranded DNA appeared in NZB/W mice, the mice were orally administered varying dosages of ACE (100, 200 and 400 mg kg−1) for 5 consecutive days per week for 12 weeks via gavage. To assess the efficacy of ACE, we measured SLE-associated biochemical and histopathological biomarkers levels of blood urine nitrogen (BUN), blood creatinine, urine protein and urine creatinine and thickness of the kidney glomerular basement membrane by staining with periodic acid-Schiff. Antroquinonol, an active component of ACE, was investigated for anti-inflammation activity in lipopolysaccharide-induced RAW 267.4 cells. ACE at 400 mg kg−1 significantly suppressed urine protein and serum BUN levels and decreased the thickness of the kidney glomerular basement membrane. Antroquinonol significantly inhibited the production of tumor necrosis factor-α and interleukin-1β by 75 and 78%, respectively. In conclusion, ACE reduced urine protein and creatinine levels and suppressed the thickening of the kidney glomerular basement membrane, suggesting that ACE protects the kidney from immunological damage resulting from autoimmune disease

    Antrodia camphorata Mycelia Attenuates the Progression of Nephritis in Systemic Lupus Erythematosus-Prone NZB/W F1 Mice

    Get PDF
    Antrodia camphorata is used in folk medicine for the treatment of inflammation syndromes and liver-related diseases in Taiwan. The goal of this study was to evaluate the efficacy of the mycelial extract of A. camphorata (ACE) for the treatment of systemic lupus erythematosus (SLE) in SLE-prone NZB/W F1 mice. After antibodies against double-stranded DNA appeared in NZB/W mice, the mice were orally administered varying dosages of ACE (100, 200 and 400 mg kg −1 ) for 5 consecutive days per week for 12 weeks via gavage. To assess the efficacy of ACE, we measured SLE-associated biochemical and histopathological biomarkers levels of blood urine nitrogen (BUN), blood creatinine, urine protein and urine creatinine and thickness of the kidney glomerular basement membrane by staining with periodic acid-Schiff. Antroquinonol, an active component of ACE, was investigated for antiinflammation activity in lipopolysaccharide-induced RAW 267.4 cells. ACE at 400 mg kg −1 significantly suppressed urine protein and serum BUN levels and decreased the thickness of the kidney glomerular basement membrane. Antroquinonol significantly inhibited the production of tumor necrosis factor-α and interleukin-1β by 75 and 78%, respectively. In conclusion, ACE reduced urine protein and creatinine levels and suppressed the thickening of the kidney glomerular basement membrane, suggesting that ACE protects the kidney from immunological damage resulting from autoimmune disease

    A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion

    Get PDF
    Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    corecore