5 research outputs found
InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting
Long-term time series forecasting (LTSF) provides substantial benefits for numerous real-world applications, whereas places essential demands on the model capacity to capture long-range dependencies. Recent Transformer-based models have significantly improved LTSF performance. It is worth noting that Transformer with the self-attention mechanism was originally proposed to model language sequences whose tokens (i.e., words) are discrete and highly semantic. However, unlike language sequences, most time series are sequential and continuous numeric points. Time steps with temporal redundancy are weakly semantic, and only leveraging time-domain tokens is hard to depict the overall properties of time series (e.g., the overall trend and periodic variations). To address these problems, we propose a novel Transformer-based forecasting model named InParformer with an Interactive Parallel Attention (InPar Attention) mechanism. The InPar Attention is proposed to learn long-range dependencies comprehensively in both frequency and time domains. To improve its learning capacity and efficiency, we further design several mechanisms, including query selection, key-value pair compression, and recombination. Moreover, InParformer is constructed with evolutionary seasonal-trend decomposition modules to enhance intricate temporal pattern extraction. Extensive experiments on six real-world benchmarks show that InParformer outperforms the state-of-the-art forecasting Transformers
Dual-Encoder Transformer for Short-Term Photovoltaic Power Prediction Using Satellite Remote-Sensing Data
The penetration of photovoltaic (PV) energy has gained a significant increase in recent years because of its sustainable and clean characteristics. However, the uncertainty of PV power affected by variable weather poses challenges to an accurate short-term prediction, which is crucial for reliable power system operation. Existing methods focus on coupling satellite images with ground measurements to extract features using deep neural networks. However, a flexible predictive framework capable of handling these two data structures is still not well developed. The spatial and temporal features are merely concatenated and passed to the following layer of a neural network, which is incapable of utilizing the correlation between them. Therefore, we propose a novel dual-encoder transformer (DualET) for short-term PV power prediction. The dual encoders contain wavelet transform and series decomposition blocks to extract informative features from image and sequence data, respectively. Moreover, we propose a cross-domain attention module to learn the correlation between the temporal features and cloud information and modify the attention modules with the spare form and Fourier transform to improve their performance. The experiments on real-world datasets, including PV station data and satellite images, show that our model achieves better results than other models for short-term PV power prediction