417 research outputs found

    Convergence of a Stochastic Method for the Modeling of Polymeric Fluids

    Full text link

    Interactions of the Infrared bubble N4 with the surroundings

    Full text link
    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with HII regions have been considered to be good samples of investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the HII region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 ×1022\times10^{22} cm2^{-2}, mean volume density of about 4.4 ×104\times10^{4} cm3^{-3}, and a mean mass of 320 MM_{\odot}. In addition, from PAH emission seen at 8 μ\mum, free-free emission detected at 20 cm and a probability density function in special regions, we could identify clear signatures of the influence of the HII region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.Comment: Accepted by ApJ (16 pages, 11 figures, 9 tables

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Infall Signatures in a Prestellar Core embedded in the High-Mass 70 μ\mum Dark IRDC G331.372-00.116

    Get PDF
    Using Galactic Plane surveys, we have selected a massive (1200 M_\odot), cold (14 K) 3.6-70 μ\mum dark IRDC G331.372-00.116. This IRDC has the potential to form high-mass stars and, given the absence of current star formation signatures, it seems to represent the earliest stages of high-mass star formation. We have mapped the whole IRDC with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.1 and 1.3 mm in dust continuum and line emission. The dust continuum reveals 22 cores distributed across the IRDC. In this work, we analyze the physical properties of the most massive core, ALMA1, which has no molecular outflows detected in the CO (2-1), SiO (5-4), and H2_2CO (3-2) lines. This core is relatively massive (MM = 17.6 M_\odot), subvirialized (virial parameter αvir=Mvir/M=0.14\alpha_{vir}=M_{vir}/M=0.14), and is barely affected by turbulence (transonic Mach number of 1.2). Using the HCO+^+ (3-2) line, we find the first detection of infall signatures in a relatively massive, prestellar core (ALMA1) with the potential to form a high-mass star. We estimate an infall speed of 1.54 km s1^{-1} and a high accretion rate of 1.96 ×\times 103^{-3} M_\odot yr1^{-1}. ALMA1 is rapidly collapsing, out of virial equilibrium, more consistent with competitive accretion scenarios rather than the turbulent core accretion model. On the other hand, ALMA1 has a mass \sim6 times larger than the clumps Jeans mass, being in an intermediate mass regime (MJ=2.7<MM_{J}=2.7<M\lesssim 30 M_\odot), contrary to what both the competitive accretion and turbulent core accretion theories predict.Comment: 13 Pages, 5 Figures, 3 Table

    The ALMA Survey of 70 μm\mu \rm m Dark High-mass Clumps in Early Stages (ASHES). II: Molecular Outflows in the Extreme Early Stages of Protocluster Formation

    Full text link
    We present a study of outflows at extremely early stages of high-mass star formation obtained from the ALMA Survey of 70 μm\mu \rm m dark High-mass clumps in Early Stages (ASHES). Twelve massive 3.6-70 μm\mu \rm m dark prestellar clump candidates were observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6. Forty-three outflows are identified toward 41 out of 301 dense cores using the CO and SiO emission lines, yielding a detection rate of 14%. We discover 6 episodic molecular outflows associated with low- to high-mass cores, indicating that episodic outflows (and therefore episodic accretion) begin at extremely early stages of protostellar evolution for a range of core masses. The time span between consecutive ejection events is much smaller than those found in more evolved stages, which indicates that the ejection episodicity timescale is likely not constant over time. The estimated outflow dynamical timescale appears to increase with core masses, which likely indicates that more massive cores have longer accretion timescales than less massive cores. The lower accretion rates in these 70 μm\mu \rm m dark objects compared to the more evolved protostars indicate that the accretion rates increase with time. The total outflow energy rate is smaller than the turbulent energy dissipation rate, which suggests that outflow induced turbulence cannot sustain the internal clump turbulence at the current epoch. We often detect thermal SiO emission within these 70 μm\mu \rm m dark clumps that is unrelated to CO outflows. This SiO emission could be produced by collisions, intersection flows, undetected protostars, or other motions.Comment: 32 pages, 9 figures, 4 tables, accepted for publication in Ap

    Grey scale enhancement by a new self-made contrast agent in early cirrhotic stage of rabbit liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of new ultrasound contrast agents (UCAs) has become one of the most promising fields in ultrasound medicine. This paper evaluates a new self-made contrast agent enhancement effect developed to study the fibrotic stages of the liver in perfusion models <it>in vivo</it>.</p> <p>Methods</p> <p>We constructed experimental models of hepatic fibrosis involving five stages from F0 to F4 via administration of CCL<sub>4 </sub>(0.01 ml/kg BW) every 3 days for 3 months. The intrahepatic circulatory time of the contrast agent was analyzed via an image and Cine-loop display. Calculations of the perfusion-related parameters including the peak signal intensity (PSI) and peak signal intensity time (PIT) of the portal vein and parenchyma were obtained from an analysis of the time-acoustic intensity curve.</p> <p>Results</p> <p>Hepatic artery to vein transmit time (HA-HVTT) was significantly shorter at F4 stage (mean 5.1 seconds) compared with those in other stages (mean 8.3 s, 7.5 s, 6.9 s, 6.6 s, P < 0.01). The average PSI difference of PV-parenchyma was 13.62 dB in F4 stage, demonstrating significant differences between F4 stage and other early stages (P < 0.001).</p> <p>Conclusion</p> <p>These results indicate that the new self-made contrast agent is capable of indicating intrahepatic hemodynamic changes. HA-HVTT and the PSI difference of the microbubble perfusion in liver parenchyma and PV were considered to differentiate the degree of hepatic fibrosis between F4 and other early stages.</p
    corecore