22 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development and pilot of an online, personalized risk assessment tool for a breast cancer precision medicine trial

    No full text
    Abstract Breast cancer risk reduction has been validated by large-scale clinical trials, but uptake remains low. A risk communication tool could provide personalized risk-reduction information for high-risk women. A low-literacy-friendly, visual, and personalized tool was designed as part of the Women Informed to Screen Depending On Measures of risk (WISDOM) study. The tool integrates genetic, polygenic, and lifestyle factors, and quantifies the risk-reduction from undertaking medication and lifestyle interventions. The development and design process utilized feedback from clinicians, decision-making scientists, software engineers, and patient advocates. We piloted the tool with 17 study participants, collecting quantitative and qualitative feedback. Overall, participants felt they better understood their personalized breast cancer risk, were motivated to reduce their risk, and considered lifestyle interventions. The tool will be used to evaluate whether risk-based screening leads to more informed decisions and higher uptake of risk-reduction interventions among those most likely to benefit

    Genome Sequence of \u3ci\u3eVictivallis vadensis\u3c/i\u3e ATCC BAA-548, an Anaerobic Bacterium from the Phylum \u3ci\u3eLentisphaerae\u3c/i\u3e, Isolated from the Human Gastrointestinal Tract

    Get PDF
    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract

    Genome Sequence of Victivallis vadensis ATCC BAA-548, an Anaerobic Bacterium from the Phylum Lentisphaerae, Isolated from the Human Gastrointestinal Tractâ–¿

    Get PDF
    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract
    corecore