89 research outputs found

    Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy

    Get PDF
    AbstractThis study reports the solid-state NMR spectroscopic characterization of a long chain phospholipid bilayer system which spontaneously aligns in a static magnetic field. Magnetically aligned phospholipid bilayers or bicelles are model systems which mimic biological membranes for magnetic resonance studies. The oriented membrane system is composed of a mixture of the bilayer forming phospholipid palmitoylstearoylphosphatidylcholine (PSPC) and the short chain phospholipid dihexanoylphosphatidylcholine (DHPC) that breaks up the extended bilayers into bilayered micelles or bicelles that are highly hydrated (approx. 75% aqueous). Traditionally, the shorter 14 carbon chain phospholipid dimyristoylphosphatidylcholine (DMPC) has been utilized as the bilayer forming phospholipid in bicelle studies. Alignment (perpendicular) was observed with a PSPC/DHPC q ratio between 1.6 and 2.0 slightly above Tm at 50°C with 2H and 31P NMR spectroscopy. Paramagnetic lanthanide ions (Yb3+) were added to flip the bilayer discs such that the bilayer normal was parallel with the static magnetic field. The approx. 1.8 (PSPC/DHPC) molar ratio yields a thicker membrane due to the differences in the chain lengths of the DMPC and PSPC phospholipids. The phosphate-to-phosphate thickness of magnetically aligned PSPC/DHPC phospholipid bilayers in the Lα phase may enhance the activity and/or incorporation of different types of integral membrane proteins for solid-state NMR spectroscopic studies

    Biomaterial for Bone and Dental Implants: Synthesis of B-Type Carbonated Hydroxyapatite from Biogenic Source

    Get PDF
    There are several sources from which hydroxyapatite (HAp) can be obtained and may be broadly categorized as synthetic or biogenic. Elevated interest in recent times has pushed for the development of several procedures for extracting HAp from biogenic wastes due to their excellent composition and morphology resemblance to the human calcified tissue (B-type carbonated HAp). Notable biogenic sources reported for HAp extraction span bovine bones, fish scales, corals, eggshells, and snails among other calcium-rich sources. However, most of the synthetic methods are laborious and therefore result in high production costs. In this chapter, we discuss the synthesis of B-type carbonate substituted HAp from an untapped biogenic source, Achatina achatina shells, using a simple precipitation method and a controlled heat-treatment method. This unique treatment method affected the substitution resulting in different crystallographic parameters and revealed a novel material for bone implants and enamel applications

    Expression, Purification, and Monitoring of Conformational Changes of hCB2 TMH67H8 in Different Membrane-Mimetic Lipid Mixtures Using Circular Dichroism and NMR Techniques

    Full text link
    This work was intended to develop self-assembly lipids for incorporating G-protein coupled receptors (GPCRs) in order to improve the success rate for nuclear magnetic resonance spectroscopy (NMR) structural elucidation. We hereby report the expression and purification of uniformly 15N-labeled human cannabinoid receptor-2 domain in insect cell media. The domain was refolded by screening several membrane mimetic environments. Different q ratios of isotropic bicelles were screened for solubilizing transmembrane helix 6, 7 and 8 (TMH67H8). As the concentration of dimyristoylphosphocholine (DMPC) was increased such that the q ratio was between 0.16 and 0.42, there was less crowding in the cross peaks with increasing q ratio. In bicelles of q = 0.42, the maximum number of cross peaks were obtained and the cross peaks were uniformly dispersed. The receptor domain in bicelles beyond q = 0.42 resulted in peak crowding. These studies demonstrate that GPCRs folding especially in bicelles is protein-specific and requires the right mix of the longer chain and shorter chain lipids to provide the right environment for proper folding. These findings will allow further development of novel membrane mimetics to provide greater diversity of lipid mixtures than those currently being employed for GPCR stability and folding, which are critical for both X-ray and NMR studies of GPCRs

    Electrochemical Response of Cells Using Bioactive Plant Isolates

    Get PDF
    Traditional herbal medical practices continue to be part of the healthcare needs of the world especially residents of sub-Sahara Africa (sSA). However, the mechanism of action of the plant metabolites to elicit their potency continue to be a mystery due to the lack of standardized methods. The mechanism of plant bioactive compounds to cause cell death is gradually being linked to membrane polarization and depolarization behaviour. The current work seeks to probe the electrochemical response of model cells using bioactive compounds captured in bio-zeolites or membrane mimetics. The voltage and current fluctuations emanating from such studies will establish a correlation between cell death and membrane depolarization. It will be a useful biological interface sensing material with the potential to identify plant metabolites that can selectively detect and destroy diseased cells. Several model membranes have already been developed for biomedical applications and this new paradigm will elevate the usefulness of these model systems. The concept was investigated using extracts from Dioclea reflexa (DR) hook which belongs to the leguminous family. There are certain class of compounds in Dioclea reflexa (DR) that have clinical usefulness in both temperate and tropical regions, however the identity of the bioactive compounds responsible for inducing cell death continue to be a major challenge

    Magnetically Aligned Supramolecular Hydrogels

    Get PDF
    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. Worm-like micelles formed from a low-molecular-weight gelator can be magnetically aligned. The alignment can be fixed by the addition of a calcium salt or by lowering the pH. By removing the sample whilst gelling, it is possible to control spatially the degree of anisotropy across the gel

    Expression, Purification, and Monitoring of Conformational Changes of hCB2 TMH67H8 in Different Membrane-Mimetic Lipid Mixtures Using Circular Dichroism and NMR Techniques

    No full text
    This work was intended to develop self-assembly lipids for incorporating G-protein coupled receptors (GPCRs) in order to improve the success rate for nuclear magnetic resonance spectroscopy (NMR) structural elucidation. We hereby report the expression and purification of uniformly 15N-labeled human cannabinoid receptor-2 domain in insect cell media. The domain was refolded by screening several membrane mimetic environments. Different q ratios of isotropic bicelles were screened for solubilizing transmembrane helix 6, 7 and 8 (TMH67H8). As the concentration of dimyristoylphosphocholine (DMPC) was increased such that the q ratio was between 0.16 and 0.42, there was less crowding in the cross peaks with increasing q ratio. In bicelles of q = 0.42, the maximum number of cross peaks were obtained and the cross peaks were uniformly dispersed. The receptor domain in bicelles beyond q = 0.42 resulted in peak crowding. These studies demonstrate that GPCRs folding especially in bicelles is protein-specific and requires the right mix of the longer chain and shorter chain lipids to provide the right environment for proper folding. These findings will allow further development of novel membrane mimetics to provide greater diversity of lipid mixtures than those currently being employed for GPCR stability and folding, which are critical for both X-ray and NMR studies of GPCRs

    A comparative study of DFT/LDA with higher levels of theory on π-π interactions: A typical case for the benzene dimer

    No full text
    Abstract The description of the interactions involving species that have π-π configuration presents a real challenge in utilizing theoretical calculations. The problem arises from the kind of theoretical approaches employed to describe the nature of these non-covalent interactions. Various workers have described the interactions purely as Van der Waals, whilst others consider it as a competition between many other Pi-pi interactions; a typical case for the benzene-dimer forces. Present approaches describing these interaction effects are computationally expensive. We report a pseudopotential base density functional theory (DFT) calculations within the local density approximation (LDA) and compared our results with other higher theories describing the π-π stacking interactions. By using benzene dimer as a prototype species, we find that, DFT/LDA compares favourably well with other descriptions as a reliable alternative method

    Capturing Dioclea Reflexa Seed Bioactives on Halloysite Nanotubes and pH Dependent Release of Cargo against Breast (MCF-7) Cancers In Vitro

    No full text
    In this work, optimization parameters were developed to capture plant metabolites from Dioclea Reflexa (DR) seed ex-tracts onto halloysites nanotubes (HNTs). A one-step pool of the crude extracts at neutral pH from the HNT lumen failed to elicit a reduction in breast cancer, Michigan Cancer Foundation-7 (MCF-7) cell viability. However, the pH-dependent elution of metabolites revealed that the acidic pH samples exhibited profound antiproliferative effects on the cancer cells compared to the basic pH metabolites using both trypan blue dye exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability test. pH~5.2 samples demonstrated by half-maximal inhibitory concentration (IC50) of 0.8 mg and a cyclic voltammetry oxidation peak potential and current of 234 mV and 0.45 µA, respectively. This indicates that the cancer cells death could be attributed to membrane polarization/depolarization effects of the sample. Fluorescence-activated cell sorting (FACS) studies confirmed that the plant metabolites affected breast cancer apoptotic signaling pathways of cell death. The studies proved that plant metabolites could be captured using simplified screening procedures for rapid drug discovery purposes. Such procedures, however, would require the integration of affordable analytical tools to test and isolate individual metabolites. Our approach could be an important strategy to create a library and database of bioactive plant metabolites based on pH values
    • …
    corecore