17 research outputs found

    Recent progress in marine mycological research in different countries, and prospects for future developments worldwide

    Get PDF
    Early research on marine fungi was mostly descriptive, with an emphasis on their diversity and taxonomy, especially of those collected at rocky shores on seaweeds and driftwood. Subsequently, further substrata (e.g. salt marsh grasses, marine animals, seagrasses, sea foam, seawater, sediment) and habitats (coral reefs, deep-sea, hydrothermal vents, mangroves, sandy beaches, salt marshes) were explored for marine fungi. In parallel, research areas have broadened from micro-morphology to ultrastructure, ecophysiology, molecular phylogenetics, biogeography, biodeterioration, biodegradation, bioprospecting, genomics, proteomics, transcriptomics and metabolomics. Although marine fungi only constitute a small fraction of the global mycota, new species of marine fungi continue to be described from new hosts/substrata of unexplored locations/habitats, and novel bioactive metabolites have been discovered in the last two decades, warranting a greater collaborative research effort. Marine fungi of Africa, the Americas and Australasia are under-explored, while marine Chytridiomycota and allied taxa, fungi associated with marine animals, the functional roles of fungi in the sea, and the impacts of climate change on marine fungi are some of the topics needing more attention. In this article, currently active marine mycologists from different countries have written on the history and current state of marine fungal research in individual countries highlighting their strength in the subject, and this represents a first step towards a collaborative inter- and transdisciplinary research strategy

    Crustose Calicioid Lichens and Fungi in Mountain Cloud Forests of Tanzania

    No full text
    A total of 26 crustose calicioid lichens and fungi were found in Tanzania. Most of them belong to a group of species with wide distributions in cool areas of both hemispheres and occasional occurrence in high mountains at low latitudes. In Tanzania calicioids mainly occur in the middle and upper forest zones and their niches are found on the bark of old trees and on lignum, most of them restricted to mountain cloud forests. Calicioids are rare and often red-listed, and are also bioindicators of long forest continuity. Consequently, they form an important biota in mountain cloud forests and deserve attention in the context of preserving biodiversity and developing conservation policies. One new species, Chaenothecopsis kilimanjaroensis, is described. Chaenotheca hispidula and Pyrgillus cambodiensis are reported as new to Africa and Calicium lenticulare and Chaenothecopsis debilis are reported as new to Tanzania

    A conspectus of the filamentous marine fungi of Sweden

    No full text
    Marine filamentous fungi have been little studied in Sweden, which is remarkable given the depth and width of mycological studies in the country since the time of Elias Fries. Seventy-four marine fungi are listed for Sweden based on historical records and recent collections, of which 16 are new records for the country. New records for the country are based on morphological identification of species mainly from marine wood, and most of them from the Swedish West Coast. In some instances, the identifications have been made by comparisons of sequences obtained from cultures with reference sequences in GenBank. Corollospora angusta, Corollospora filiformis, and Corollospora pulchella, previously known from tropical/subtropical areas, are recorded for the first time for Sweden. The arctic Havispora longyearbyensis was also found. Kalmusia longispora and Neocamarosporium calvescens were reported for the first time from marine habitats.Marina svampar i Sverig

    Coniocybe Ach. revisited

    No full text
    Calicioids form a research field that has encompassed ascomycetous fungi with stalked ascomata similar to those of the lichen genus Calicium. Early generic circumscriptions of calicioid lichens and fungi were mainly based on morphological and secondary chemistry information. After the introduction of molecular data, taxonomy in the group has been reconsidered. Here, based on a broad geographical sampling, Coniocybe Ach. was revised using molecular and morphological features. Three loci (ITS, LSU and rpb1) were compared to infer its phylogenetic position, and a total of 52 new sequences (14 ITS, 24 LSU and 14 rpb1) were produced. Apart from its type C. furfuracea, Coniocybe was revised and emended to also include C. brachypoda and C. confusa. In addition, a new species, Coniocybe eufuracea, was described, and a key to the species of Coniocybe was provided.SIDA Project: "Capacity building in interdisciplinary Molecular Biosciences Program", Contribution No 5117007

    Phylogeny of the subgenus Eumitria in Tanzania

    No full text
    Several Usnea species in subgenus Eumitria (Parmeliaceae, lichenized Ascomycota) have been described from East Africa in the past decades. These have been based on morphology and chemistry data while molecular studies remain very limited. In this paper we are for the first time publishing phylogenetic analyses along with morphological and chemical data for Eumitria. ‬A total of 62 new sequences of Eumitria (26 ITS, 20 nuLSU, 6 MCM7, 10 RPB1) were generated in this study. nuLSU, MCM7 and RPB1 sequences are here for the first time reported for U. baileyi. A phylogeny of subgenus Eumitria from Tanzania based on Bayesian and maximum likelihood analyses of a concatenated four-loci data set is presented, confirming the monophyly of Eumitria. Further, secondary chemistry and variation in characters, such as the pigmentation of the central axis and branch shape were investigated.Swedish International Development Cooperation Agency (SIDA) – UDSM-SIDA, Project No. 2221

    Marine fungi of the Baltic Sea

    No full text
    Vast parts of the Baltic Sea have been mycologically neglected and are still awaiting exploration. Here we summarise earlier records of marine fungi from the Baltic, supplementing them with discoveries from fieldwork in Sweden in 2019. Although marine fungal diversity is clearly attenuated in the brackish water of the Baltic Sea, a substantial number has still been discovered. Here we list 77 species from the Baltic Sea, whereas after a critical assessment a further 18 species have been excluded as records of marine fungi. The species have mainly been identified by their morphological features, supplemented by DNA-based diagnostics. Most of the species have their main distributions in temperate areas of the Atlantic Ocean. Some of the Baltic species discovered here represent far disjunctions to tropical waters while only a very few are until now only recorded for the Baltic Sea. In this paper two species belong in Basidiomycota, while the most ascomyceteous speciose classes are Sordariomycetes (with 42 species) and Dothideomycetes (24). Halosphaeriaceae is the most speciose family in marine habitats, as also in the Baltic Sea, represented here by 29 species. Three species are new to Europe, and in addition 13 to the Baltic Sea and 13 to Sweden

    Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales)

    No full text
    A large polyporoid mushroom from the West Usambara Mountains in North-eastern Tanzania produces dark brown, up to 60-cm large fruiting bodies that at maturity may weigh more than 10 kg. It has a high rate of mycelial growth and regeneration and was found growing on both dry and green leaves of shrubs; attached to the base of living trees, and it was also observed to degrade dead snakes and insects accidentally coming into contact with it. Phylogenetic analyses based on individual and concatenated data sets of nrLSU, nrSSU and the RPB2 and TEF1 genes showed it, together with Laetiporus, Phaeolus, Pycnoporellus and Wolfiporia, to form a monophyletic group in Polyporales. Based on morphological features and molecular data, it is described as Kusaghiporia usambarensis

    Global consortium for the classification of fungi and fungus-like taxa

    No full text
    The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.For complete list of authors see http://dx.doi.org/10.5943/mycosphere/14/1/23</p

    Phylogenetic assessment and taxonomic revision of Halobyssothecium and Lentithecium (Lentitheciaceae, Pleosporales)

    No full text
    Our studies on lignicolous aquatic fungi in Thailand, Sweden, and the UK resulted in the collection of three new Halobyssothecium species (H. bambusicola, H. phragmitis, H. versicolor) assigned to Lentitheciaceae (Pleosporales, Dothideomycetes). Multi-loci phylogenetic analyses of the combined large subunit, small subunit, internal transcribed spacers of ribosomal DNA, and the translation elongation factor 1-alpha sequence data enabled a revision of the taxa assigned to Lentithecium and the transfer of L. cangshanense, L. carbonneanum, L. kunmingense, L. unicellulare, and L. voraginesporum to Halobyssothecium. Collection of an asexual morph of L. lineare and phylogenetic analysis confirmed its taxonomic placement in Keissleriella. Detailed descriptions and illustrations of H. bambusicola, H. phragmitis, and H. versicolor are provided

    Phylogenetic position and taxonomy of <i>Kusaghiporia usambarensis</i> gen. et sp. nov. (Polyporales)

    No full text
    <p>A large polyporoid mushroom from the West Usambara Mountains in North-eastern Tanzania produces dark brown, up to 60-cm large fruiting bodies that at maturity may weigh more than 10 kg. It has a high rate of mycelial growth and regeneration and was found growing on both dry and green leaves of shrubs; attached to the base of living trees, and it was also observed to degrade dead snakes and insects accidentally coming into contact with it. Phylogenetic analyses based on individual and concatenated data sets of nrLSU, nrSSU and the RPB2 and TEF1 genes showed it, together with <i>Laetiporus, Phaeolus, Pycnoporellus</i> and <i>Wolfiporia</i>, to form a monophyletic group in <i>Polyporales</i>. Based on morphological features and molecular data, it is described as <i>Kusaghiporia usambarensis</i>.</p
    corecore