184 research outputs found

    New radio observations of anomalous microwave emission in the HII region RCW175

    Get PDF
    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2\pm0.2(rand.)\pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.Comment: Accepted for publication in the Astrophysical Journa

    Constraints on Free-Free Emission from Anomalous Microwave Emission Sources in the Perseus Molecular Cloud

    Get PDF
    We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3σ upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature

    Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data

    Get PDF
    Planck data when combined with ancillary data provide a unique opportunity to separate the diffuse emission components of the inner Galaxy. The purpose of the paper is to elucidate the morphology of the various emission components in the strong star-formation region lying inside the solar radius and to clarify the relationship between the various components. The region of the Galactic plane covered is l = 300° → 0° → 60° wherestar-formation is highest and the emission is strong enough to make meaningful component separation. The latitude widths in this longitude range lie between 1° and 2°, which correspond to FWHM z-widths of 100−200 pc at a typical distance of 6 kpc. The four emission components studied here are synchrotron, free-free, anomalous microwave emission (AME), and thermal (vibrational) dust emission. These components are identified by constructing spectral energy distributions (SEDs) at positions along the Galactic plane using the wide frequency coverage of Planck (28.4−857 GHz) in combination with low-frequency radio data at 0.408−2.3 GHz plus WMAP data at 23−94 GHz, along with far-infrared (FIR) data from COBE-DIRBE and IRAS. The free-free component is determined from radio recombination line (RRL) data. AME is found to be comparable in brightness to the free-free emission on the Galactic plane in the frequency range 20−40 GHz with a width in latitude similar to that of the thermal dust; it comprises 45 ± 1% of the total 28.4 GHz emission in the longitude range l = 300° → 0° → 60°. The free-free component is the narrowest, reflecting the fact that it is produced by current star-formation as traced by the narrow distribution of OB stars. It is the dominant emission on the plane between 60 and 100 GHz. RRLs from this ionized gas are used to assess its distance, leading to a free-free z-width of FWHM ≈ 100 pc. The narrow synchrotron component has a low-frequency brightness spectral index β_(synch) ≈ −2.7 that is similar to the broad synchrotron component indicating that they are both populated by the cosmic ray electrons of the same spectral index. The width of this narrow synchrotron component is significantly larger than that of the other three components, suggesting that it is generated in an assembly of older supernova remnants that have expanded to sizes of order 150 pc in 3 × 10^5 yr; pulsars of a similar age have a similar spread in latitude. The thermal dust is identified in the SEDs with average parameters of T_(dust) = 20.4 ± 0.4 K, β_(FIR) = 1.94 ± 0.03 (> 353 GHz), and β_(mm) = 1.67 ± 0.02 (< 353 GHz). The latitude distributions of gamma-rays, CO, and the emission in high-frequency Planck bands have similar widths, showing that they are all indicators of the total gaseous matter on the plane in the inner Galaxy

    IR-correlated 31 GHz radio emission from Orion East

    Get PDF
    Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1622 in a region known as Orion East. A broken ring with diameter g\approx 20 arcmin of diffuse emission is detected at 31 GHz, at \approx 20-30 mJy beam−1^{-1} with an angular resolution of \approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at 12−100μ12-100 \mum with correlation coefficients of r \approx 0.7-0.8, significant at ∼10σ\sim10\sigma. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a 3σ3\sigma upper limit on free-free emission of 7.2 mJy beam−1^{-1} (\la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {\it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to \sim10percentat31GHz.Inthismodel,anexcessof1.52±0.66Jy(2.3σ)isseenat31GHz.Futurehighfrequency 10 per cent at 31 GHz. In this model, an excess of 1.52\pm 0.66 Jy (2.3\sigma) is seen at 31 GHz. Future high frequency \sim100−1000GHzdata,suchasthosefromthePlancksatellite,arerequiredtoaccuratelydeterminethethermaldustcontributionat31GHz.CorrelationswiththeIRAS 100-1000 GHz data, such as those from the {\it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS 100 \mumgaveacouplingcoefficientofm gave a coupling coefficient of 18.1\pm4.4 \muK(MJy/sr)K (MJy/sr)^{-1}$, consistent with the values found for LDN1622.Comment: 8 pages, 3 figures, 3 tables, submitted to MNRA

    Spitzer characterisation of dust in an anomalous emission region: the Perseus cloud

    Get PDF
    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterise the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field (χISRF\chi_\mathrm{ISRF}), the mass abundances of the PAHs and VSGs relative to the BGs (YPAH_\mathrm{PAH} and YVSG_\mathrm{VSG}), the column density of hydrogen (NH_\mathrm{H}) and the equilibrium dust temperature (Tdust_\mathrm{dust}). The parameter maps of YPAH_\mathrm{PAH}, YVSG_\mathrm{VSG} and χISRF\chi_\mathrm{ISRF} are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which anomalous emission is observed. We find that in regions of anomalous emission the strength of the ISRF, and consequently the equilibrium temperature of the dust, is enhanced while there is no significant variation in the abundances of the PAHs and the VSGs or the column density of hydrogen. We interpret these results as an indication that the enhancement in χISRF\chi_\mathrm{ISRF} might be affecting the properties of the small stochastically heated dust grains resulting in an increase in the spinning dust emission observed at 33 GHz. This is the first time that such an investigation has been performed, and we believe that this type of analysis creates a new perspective in the field of anomalous emission studies, and represents a powerful new tool for constraining spinning dust models.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Using Spinning Dust Emission To Constrain The Abundance Of Very Small Dust Grains In Dense Cores

    Get PDF
    We present the first analysis of using spinning dust emission as a method to characterise the properties of very small interstellar dust grains in dense cores

    The pros and cons of the inversion method approach to derive 3D dust emission properties in the ISM: the Hi-GAL field centred on (l, b) = (30°, 0°)

    Get PDF
    Herschel far-infrared continuum data obtained as part of the Hi-GAL survey have been used, together with the GLIMPSE 8 μm and MIPSGAL 24 μm data, to attempt the first 3D-decomposition of dust emission associated with atomic, molecular and ionized gas at 15 arcmin angular resolution. Our initial test case is a 2 × 2 square degrees region centred on (l, b) = (30°, 0°), a direction that encompasses the origin point of the Scutum–Crux Arm at the tip of the Galactic Bar. Coupling the IR maps with velocity maps specific for different gas phases (H i 21cm, ^(12)CO and ^(13)CO, and radio recombination lines), we estimate the properties of dust blended with each of the gas components and at different Galactocentric distances along the line of sight (LOS). A statistical Pearson's coefficients analysis is used to study the correlation between the column densities estimated for each gas component and the intensity of the IR emission. This analysis provides evidence that the 2 × 2 square degree field under consideration is characterized by the presence of a gas component not accounted for by the standard tracers, possibly associated with warm H_2 and cold H I. We demonstrate that the IR radiation in the range 8 < λ < 500 μm is systematically dominated by emission originating within the Scutum–Crux Arm. By applying an inversion method, we recover the dust emissivities associated with atomic, molecular and ionized gas. Using the DustEM model, we fit the spectral energy distributions for each gas phase, and find average dust temperatures of T_(d,H I) = 18.82 ± 0.47 K, T_(d,H_2) = 18.84 ± 1.06 K and T_(d,H II) = 22.56 ± 0.64 K, respectively. We also obtain an indication for polycyclic aromatic hydrocarbons depletion in the diffuse ionized gas. We demonstrate the importance of including the ionized component in 3D-decompositions of the total IR emission. However, the main goal of this work is to discuss the impact of the missing column density associated with the dark gas component on the accurate evaluation of the dust properties, and to shed light on the limitations of the inversion method approach when this is applied to a small section of the Galactic plane and when the working resolution allows sufficient de-blending of the gas components along the LOS

    Designing medical technology for developing countries

    Get PDF
    Resource-poor countries have markedly different healthcare systems. Many developed nations donate medical supplies to these countries, but this often does not meet the needs of the recipients. Our goal is to develop simple healthcare solutions that can be produced in-country so the developing area does not depend on outside sources for its supplies. Our group works on many projects, including sustainable woven grass neck braces and a variety of low-cost sensors. Our designs do not require frequent donations, minimize the use of consumables, and provide better detection and/or treatment of prevalent medical concerns. Our baby monitor will detect skin temperature and control a heating element based on the needs of the infant. Our low-cost glucometer operates with the use of test strips that can be printed for a penny with a standard inkjet printer. This will allow the hospital or clinic to print the strips themselves rather than depend on donated strips. Our bacterial sensor will measure resistance to quickly detect the quantity of bacteria in a sample. We seek sustainable solutions for in-house manufacturing to advance more self-sufficient healthcare systems
    • …
    corecore