409 research outputs found

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Invariant measures for stochastic evolution equations of pure jump type

    No full text
    In this paper, we obtain a characterization of invariant measures of stochastic evolution equations and stochastic partial differential equations of pure jump type. As an application, it is shown that the equation has a unique invariant probability measure under some reasonable conditions.Stochastic evolution equations Stochastic partial differential equations Poisson counting measures Semigroups Invariant measures

    Charge-Transfer Knowledge Graph among Amino Acids Derived from High-Throughput Electronic Structure Calculations for Protein Database

    No full text
    The anisotropic feature of charge transfer reactions in realistic proteins cannot be ignored, due to the highly complex chemical structure of bio-molecules. In this work, we have performed the first large-scale quantitative assessment of charge transfer preference in protein complexes by calculating the charge transfer couplings in all 20*20 possible amino acid side chain combinations, which are extracted from available high-quality structures of thousands of protein complexes. The charge transfer database quantitatively shows distinct features of charge transfer couplings among millions of amino acid side-chains combinations. The knowledge graph of charge transfer couplings reveals that only one average or representative structure cannot be regarded as the typical charge transfer preference in realistic proteins. This data driven model provides us an alternative route to comprehensively understand the pairwise charge transfer coupling parameters based structural similarity, without any require of the knowledge of chemical intuition about the chemical interactions.Comment: 19 pages, 5 figure

    Laser-induced periodic surface structures as optical resonators for organic thin-film distributed feedback lasers

    No full text
    Laser-induced periodic surface structures (LIPSS) have received considerable attention due to their potential for micro-and nanostructuring and surface functionalization of various materials. We present a novel application of LIPSS on a glass substrate as distributed feedback (DFB) laser resonators, capable of providing sufficient positive optical feedback to achieve lasing in thin-film waveguides with organic small molecules as a gain medium. The direct femtosecond micromachining allows for easy variation of the periodicity across a broad range of values, including those required to reach 1st Bragg order DFB operation. We investigate several small molecule organic thin-film systems and observe lasing in strong accordance with the underlying periodicities of all photonic structures involved. These results demonstrate the effectiveness of LIPSS as DFB laser resonators and suggest that they could facilitate the integration of organic thin-film media-based lasers and other photonic devices into various integrated photonic systems

    Attention Fusion of Transformer-Based and Scale-Based Method for Hyperspectral and LiDAR Joint Classification

    No full text
    In recent years, there have been many multimodal works in the field of remote sensing, and most of them have achieved good results in the task of land-cover classification. However, multi-scale information is seldom considered in the multi-modal fusion process. Secondly, the multimodal fusion task rarely considers the application of attention mechanism, resulting in a weak representation of the fused feature. In order to better use the multimodal data and reduce the losses caused by the fusion of different modalities, we proposed a TRMSF (Transformer and Multi-scale fusion) network for land-cover classification based on HSI (hyperspectral images) and LiDAR (Light Detection and Ranging) images joint classification. The network enhances multimodal information fusion ability by the method of attention mechanism from Transformer and enhancement using multi-scale information to fuse features from different modal structures. The network consists of three parts: multi-scale attention enhancement module (MSAE), multimodality fusion module (MMF) and multi-output module (MOM). MSAE enhances the ability of feature representation from extracting different multi-scale features of HSI, which are used to fuse with LiDAR feature, respectively. MMF integrates the data of different modalities through attention mechanism, thereby reducing the loss caused by the data fusion of different modal structures. MOM optimizes the network by controlling different outputs and enhances the stability of the results. The experimental results show that the proposed network is effective in multimodality joint classification

    Genome-scale identification and characterization of moonlighting proteins

    Get PDF
    Moonlighting proteins perform two or more cellular functions, which are selected based on various contexts including the cell type they are expressed, their oligomerization status, and the binding of different ligands at different sites. To understand overall landscape of their functional diversity, it is important to establish methods that can identify moonlighting proteins in a systematic fashion. Here, we have developed a computational framework to find moonlighting proteins on a genome scale and identified multiple proteomic characteristics of these proteins
    corecore