290 research outputs found

    Seroprevalence of Toxoplasma gondii infection in pet dogs in Kunming, Southwest China

    Get PDF
    BACKGROUND: Toxoplasmosis is a zoonotic parasitic disease caused by the protozoan Toxoplasma gondii, which infects almost all warm-blooded animals, including humans, with a worldwide distribution. However, little is known of T. gondii seroprevalence in pet dogs in Kunming, the capital of Yunnan Province, southwest China. The objective of this investigation was to estimate the seroprevalence of T. gondii infection in pet dogs in this area. METHODS: A total of 611 serum samples were collected from 7 pet hospitals in Kunming, and assayed for T. gondii antibodies by the indirect haemagglutination (IHA) using a commercially-marked kit. RESULTS: 132 (21.6%) pet dogs were positive for T. gondii antibodies, and the seroprevalence ranged from 17.3% to 34.7% among different sampling regions, the difference was statistically significant (P < 0.05). The T. gondii seroprevalence in female and male dogs were 20.8% and 22.4%, respectively, the difference was not statistically significant (P > 0.05). The seroprevalence ranged from 17.5% to 23.6% among different age groups, but the difference was not statistically significant (P > 0.05), and there were no interactions in statistics (P > 0.05) between gender and age of pet dogs in the region. CONCLUSIONS: The findings of the present survey indicate high T. gondii seroprevalance in pet dogs in Kunming, southwest China, posing significant public health concern. It is necessary to enhance integrated strategies and measures to prevent and control T. gondii infection in pet dogs in this area

    Decreased NPC1L1 expression in the liver from Chinese female gallstone patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol gallstone disease is a very common disease in both industrialized and developing countries. Many studies have found that cholesterol gallstones are more common in women than men. The molecular mechanisms underlying the relationship between female gallstone disease and hepatic sterol transporters are still undergoing definition and have not been evaluated in humans.</p> <p>Aims</p> <p>The aim of this study is to probe for underlying hepatic molecular defects associated with development of gallstones in female.</p> <p>Methods/Results</p> <p>Fifty-seven nonobese, normolipidemic Chinese female gallstone patients (GS) were investigated with 12 age- and body mass index-matched female gallstone-free controls (GSF). The bile from the female GS had higher cholesterol saturation than that from the female GSF. The hepatic NPC1L1 mRNA levels were lower in female GS, correlated with SREBP2 mRNA. NPC1L1 downregulation was confirmed at protein levels. Consistently, immunohistochemistry showed decreased NPC1L1 expression in female GS.</p> <p>Conclusions</p> <p>The decreased hepatic NPC1L1 levels in female GS might indicate a downregulated reabsorption of biliary cholesterol in the liver, which, in turn, leads to the cholesterol supersaturation of bile. Our data are consistent with the possibility that hepatic NPC1L1 may be mediated by SREBP2.</p

    The underlying microbial mechanism of epizootic rabbit enteropathy triggered by a low fiber diet

    Get PDF
    Publication history: Accepted - 24 July 2018; Published online - 21 August 2018.Epizootic rabbit enteropathy (ERE) is reproduced successfully in the present study by feeding rabbits a low-fibre diet, and high-throughput sequencing and quantitative real-time PCR (qPCR) analysis were applied to examine the microbial variations in the stomach, small intestine and caecum. The evenness was disturbed and the richness was decreased in the ERE groups. When the rabbits were suffering from ERE, the abundance of the Firmicutes was decreased in three parts of the digestive tract, whereas the Proteobacteria was increased in the stomach and caecum, the Bacteroidetes and Verrucomicrobia were increased in the small intestine. Correlation analysis showed that the reduced concentrations of TVFA and butyrate in the caeca of the ERE group were attributed to the decreased abundances of genera such as Lactobacillus, Alistipes and other fibrolytic bacteria and butyrate- producing bacteria such as Eubacterium and Faecalibacterium. It is concluded that, in terms of microorganisms, the overgrowth of Bacteroides fragilis, Clostridium perfringen, Enterobacter sakazakii and Akkermansia muciniphila and inhibition of Bifidobacterium spp. and Butyrivibrio fibrisolvens in the stomach, small intestine and caecum resulted in a decrease in butyrate yield, leading to the incidence of ERE, and the probability of developing ERE could be manipulated by adjusting the dietary fibre level.The financial support was provided by the International Cooperation Project of Ministry of Science and Technology of China (2014DFA32860)

    SIRT1 deacetylates SATB1 to facilitate MARHS2-MARε interaction and promote ε-globin expression

    Get PDF
    The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and β-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of β-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the β-globin locus, MARHS2 and MARε. We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level

    Persistent sulfate formation from London Fog to Chinese haze

    Get PDF
    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world

    SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways

    Get PDF
    Changes in cellular ion levels can modulate distinct signaling networks aimed at correcting major disruptions in ion balances that might otherwise threaten cell growth and development. Salt-inducible kinase 1 (SIK1) and salt overly sensitive 2 (SOS2) are key protein kinases within such networks in mammalian and plant cells, respectively. In animals, SIK1 expression and activity are regulated in response to the salt content of the diet, and in plants SOS2 activity is controlled by the salinity of the soil. The specific ionic stress (elevated intracellular sodium) is followed by changes in intracellular calcium; the calcium signals are sensed by calcium-binding proteins and lead to activation of SIK1 or SOS2. These kinases target major plasma membrane transporters such as the Na+,K+-ATPase in mammalian cells, and Na+/H+ exchangers in the plasma membrane and membranes of intracellular vacuoles of plant cells. Activation of these networks prevents abnormal increases in intracellular sodium concentration

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore