11 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Volume of polyethylene bags for development of papaya seedlings in protected environments Volumes de sacolas de polietileno no desenvolvimento de mudas de mamoeiro em ambientes protegidos

    No full text
    The objective of this study was to test container of polyethylene bags and protected environments on the papaya seedlings production, from May to August of 2008, in Aquidauana state of Mato Grosso do Sul (MS), Brazil. Five bags of polyethylene were used: 7.5 cm x 11.5 cm, 205.9 cm³; 8.4 cm x 10.6 cm, 238.1cm³; 10.0 cm x 16.5 cm, 525.2 cm³; 12.0 cm x 12.0 cm, 550.0 cm³ and 15.0 cm x 21.5 cm, 1539.8 cm³. These containers were placed in three protected environments: greenhouse; screened nursery with Sombrite® and screened nursery with Aluminet®. Because there is no replication of growing environment, each one was considered an experiment. For each cultivation environment, it was adopted a completely randomized design with eight replications of two plants each. Initially, data were submitted to analysis of individual variance of the container (for each cultivation environment), then performing the evaluation of the residual mean squares and the combined analysis of these environments for comparison of protected environments. The greenhouse and nursery with thermal reflector screen produced the best seedlings. The bags of 15.0 x 21.5 cm produced the best papaya seedlings. The Dickson Quality Index pointed the nursery with screen of thermal reflector as the environment that produced the most vigorous seedlings, when using the best container.<br>O objetivo deste trabalho foi testar sacos de polietileno e ambientes protegidos na produção de mudas de mamoeiro, de maio a agosto de 2008, em Aquidauana -MS. Foram utilizadas cinco dimensões de sacos de polietileno: 7,5 cm x 11,5 cm, 205,9 cm³; 8,4 cm x 10,6 cm, 238,1 cm³; 10,0 cm x 16,5 cm, 525,2 cm³; 12,0 cm x 12,0 cm, 550,0 cm³, e 15,0 cm x 21,5 cm, 1.539,8 cm³. Estes recipientes foram acomodados em três ambientes protegidos: estufa agrícola; viveiro telado com Sombrite® e viveiro telado com Aluminet®. Por não haver repetição do ambiente de cultivo, cada um foi considerado um experimento. Para cada ambiente de cultivo, foi adotado o delineamento experimental inteiramente casualizado, com oito repetições de duas plantas cada. Inicialmente, os dados foram submetidos às análises de variâncias individuais dos recipientes (para cada ambiente de cultivo), realizando-se em seguida a avaliação dos quadrados médios dos resíduos e a análise conjunta dos experimentos para a comparação dos ambientes protegidos. A estufa agrícola e o telado de termorrefletora produziram as melhores mudas. O recipiente de 15,0 x 21,5 cm produziu as melhores mudas do mamoeiro. O índice de qualidade de Dickson apontou o telado de termorrefletora como ambiente que produziu muda mais vigorosa quando se utilizou o melhor recipiente

    Production of baruzeiro seedling in different protected environments and substrates Produção de mudas de baruzeiro em diferentes ambientes protegidos e substratos

    No full text
    The high seedlings quality is essential for deployment of homogeneous orchards. This study evaluated the baruzeiro (Dipteryx alata Vog) seedlings formation on different substrates within protected environments. It was used substrates with100% of cattle manure; 100% of cassava stems; 100% of vermiculite; 50% of cattle manure + 50% of cassava stems; 50% of cattle manure + 50% of vermiculite; 50% of cassava stems + 50% of vermiculite; and + &#8531; of cattle manure + &#8531; of cassava stems + &#8531; of vermiculite. These substrates were tested in protected areas: greenhouse; black shade net of 50% shading; and aluminized thermo-reflective screen of 50% shading. A completely randomized experimental design with five replicates of four plants was adopted. Initially, data were submitted to analysis of individual variance of the substrates, in each environment of cultivation, then performing the evaluation of the residual mean square and the analysis of these environments together for comparison. The best substrate for baruzeiro seedlings was pure vermiculite. The substrates with 100% of manure and the substrate with 33.33% of the mixed studied materials can be used for seedlings formation. The environment with screen can be indicated for the production of baruzeiro seedlings, since it gave vigor to the seedlings.<br>A qualidade da muda é fundamental para implantação de pomares homogêneos. Desta forma, avaliou-se a formação de mudas de baruzeiro (Dipteryx alata Vog), em diferentes substratos, no interior de ambientes protegidos. Foram utilizados substratos com 100% de esterco bovino; 100% de ramas de mandioca; 100% de vermiculita; 50% de esterco bovino + 50% de ramas de mandioca; 50% de esterco bovino + 50% de vermiculita; 50% de ramas de mandioca + 50% de vermiculita e &#8531; de esterco bovino + &#8531; de ramas de mandioca + &#8531; de vermiculita. Estes substratos foram testados em ambientes protegidos: estufa agrícola; telado de tela preta com 50% de sombreamento e o telado de tela termorrefletora aluminizada com 50% de sombreamento. Foi adotado o delineamento experimental inteiramente casualizado, com cinco repetições de quatro plantas cada. Inicialmente, os dados foram submetidos às análises de variâncias individuais dos substratos em cada ambiente de cultivo, realizando em seguida a avaliação dos quadrados médios dos resíduos e a análise conjunta dos ambientes. O melhor substrato para a formação das mudas do baruzeiro foi a vermiculita pura. O substrato com 100% de esterco e o substrato com 33,33% dos materiais estudados podem ser indicados para a formação das mudas. Os telados podem ser indicados para produção de mudas de baruzeiro, pois conferiram vigor às mesmas
    corecore