24 research outputs found
Triangulum II: Not Especially Dense After All
Among the Milky Way satellites discovered in the past three years, Triangulum
II has presented the most difficulty in revealing its dynamical status. Kirby
et al. (2015a) identified it as the most dark matter-dominated galaxy known,
with a mass-to-light ratio within the half-light radius of 3600 +3500 -2100
M_sun/L_sun. On the other hand, Martin et al. (2016) measured an outer velocity
dispersion that is 3.5 +/- 2.1 times larger than the central velocity
dispersion, suggesting that the system might not be in equilibrium. From new
multi-epoch Keck/DEIMOS measurements of 13 member stars in Triangulum II, we
constrain the velocity dispersion to be sigma_v < 3.4 km/s (90% C.L.). Our
previous measurement of sigma_v, based on six stars, was inflated by the
presence of a binary star with variable radial velocity. We find no evidence
that the velocity dispersion increases with radius. The stars display a wide
range of metallicities, indicating that Triangulum II retained supernova ejecta
and therefore possesses or once possessed a massive dark matter halo. However,
the detection of a metallicity dispersion hinges on the membership of the two
most metal-rich stars. The stellar mass is lower than galaxies of similar mean
stellar metallicity, which might indicate that Triangulum II is either a star
cluster or a tidally stripped dwarf galaxy. Detailed abundances of one star
show heavily depressed neutron-capture abundances, similar to stars in most
other ultra-faint dwarf galaxies but unlike stars in globular clusters.Comment: accepted to ApJ, Table 5 available as a machine-readable table by
clicking on "Other formats" on the right. Proof corrections reflected in
version
An investigation of the formation and line properties of MgH in 3D hydrodynamical model stellar atmospheres
Studies of the isotopic composition of magnesium in cool stars have so far
relied upon the use of one-dimensional (1D) model atmospheres. Since the
isotopic ratios derived are based on asymmetries of optical MgH lines, it is
important to test the impact from other effects affecting line asymmetries,
like stellar convection. Here, we present a theoretical investigation of the
effects of including self-consistent modeling of convection. Using spectral
syntheses based on 3D hydrodynamical COBOLD models of dwarfs
(4000K, log(g),
) and giants (K,
log(g), ), we perform a detailed
analysis comparing 3D and 1D syntheses.
We describe the impact on the formation and behavior of MgH lines from using
3D models, and perform a qualitative assessment of the systematics introduced
by the use of 1D syntheses.
Using 3D model atmospheres significantly affect the strength of the MgH
lines, especially in dwarfs, with 1D syntheses requiring an abundance
correction of up to +0.69 dex largest for our 5000K models. The corrections are
correlated with and are also affected by the metallicity. The
shape of the strong MgH component in the 3D syntheses is poorly
reproduced in 1D. This results in 1D syntheses underestimating MgH by up
to percentage points and overestimating MgH by a similar amount
for dwarfs. This discrepancy increases with decreasing metallicity. MgH
is recovered relatively well, with the largest difference being
percentage points. The use of 3D for giants has less impact, due to smaller
differences in the atmospheric structure and a better reproduction of the line
shape in 1D.Comment: 20 pages, 15 figures, accepted for publication in Ap
The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns
Context: The study of chemical abundance patterns in globular clusters is of
key importance to constrain the different candidates for intra-cluster
pollution of light elements. Aims: We aim at deriving accurate abundances for a
large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new
constraints to the pollution scenarios for this particular cluster, expanding
the range of previously derived element abundances. Methods: Using tailored 1D
LTE atmospheric models together with a combination of equivalent width
measurements, LTE, and NLTE synthesis we derive stellar parameters and element
abundances from high-resolution, high signal-to-noise spectra of 13 red giant
stars near the tip of the RGB. Results: We derive abundances of a total 27
elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr,
Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into
account for Na, Al and Ba. We find a mean [Fe/H] = and
in good agreement with previous studies. The
remaining elements show good agreement with the literature, but the inclusion
of NLTE for Al has a significant impact on the behaviour of this key element.
Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae
found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to
lower values, indicating that this may be overestimated in earlier works. No
evidence for an intrinsic variation is found in any of the remaining elements.Comment: 22 pages, 16 figures. Accepted for publication in A&
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
On the significance of the excess number of strong Mg II absorbers observed toward gamma-ray bursts
The number of strong (equivalent width >1 Å) Mg II absorbers observed toward gamma-ray bursts (GRBs) has been found to be statistically larger than the number of strong absorbers toward quasi-stellar objects (QSOs). We formalize this "Mg II problem" an
The age of 47 Tuc from self-consistent isochrone fits to colour-magnitude diagrams and the eclipsing member V69
Our aim is to derive a self-consistent age, distance and composition for the globular cluster 47 Tucanae (47 Tuc; NGC104). First, we re-evaluate the reddening towards the cluster resulting in a nominal E(B - V) = 0.03 ± 0.01 as the best estimate. The Teff of the components of the eclipsing binary member V69 is found to be 5900 ± 72 K from both photometric and spectroscopic evidence. This yields a true distance modulus (m-M)0 =13.21±0.06(random) ±0.03(systematic) to 47 Tuc when combined with existing measurements of V69 radii and luminosity ratio. We then present a new completely self-consistent isochrone fitting method to ground-based and Hubble Space Telescope cluster colour-magnitude diagrams and the eclipsing binary member V69. The analysis suggests that the composition of V69, and by extension one of the populations of 47 Tuc, is given by [Fe/H]~-0.70, [O/Fe]~+0.60 and Y~0.250 on the solar abundance scale of Asplund, Grevesse. However, this depends on the accuracy of the model Teff scale that is 50-75 K cooler than our best estimate but within measurement uncertainties. Our best estimate of the age of 47 Tuc is 11.8 Gyr, with firm (3σ) lower and upper limits of 10.4 and 13.4 Gyr, respectively, in satisfactory agreement with the age derived from the white dwarf cooling sequence if our determination of the distance modulus is adopte