4 research outputs found

    How to measure work functions from aqueous solutions

    No full text
    The recent application of concepts from condensed-matter physics to photoelectron spectroscopy (PES) of volatile, liquid-phase systems has enabled the measurement of electronic energetics of liquids on an absolute scale. Particularly, vertical ionization energies, VIEs, of liquid water and aqueous solutions, both in the bulk and at associated interfaces, can now be accurately, precisely, and routinely determined. These IEs are referenced to the local vacuum level, which is the appropriate quantity for condensed matter with associated surfaces, including liquids. In this work, we connect this newly accessible energy level to another important surface property, namely, the solution work function, eΦliqeΦ_{liq}. We lay out the prerequisites for and unique challenges of determining eΦeΦ of aqueous solutions and liquids in general. We demonstrate – for a model aqueous solution with a tetra-n-butylammonium iodide (TBAI) surfactant solute – that concentration-dependent work functions, associated with the surface dipoles generated by the segregated interfacial layer of TBA+^+ and I−^− ions, can be accurately measured under controlled conditions. We detail the nature of surface potentials, uniquely tied to the nature of the flowing-liquid sample, which must be eliminated or quantified to enable such measurements. This allows us to refer aqueous-phase spectra to the Fermi level and to quantitatively assign surfactant-concentration-dependent spectral shifts to competing work function and electronic-structure effects, where the latter are typically associated with solute–solvent interactions in the bulk of the solution which determine, e.g., chemical reactivity. The present work describes the extension of liquid-jet PES to quantitatively access concentration-dependent surface descriptors that have so far been restricted to solid-phase measurements. Correspondingly, these studies mark the beginning of a new era in the characterization of the interfacial electronic structure of aqueous solutions and liquids more generally

    Photoelectron spectroscopy from a liquid flatjet

    Get PDF
    We demonstrate liquid-jet photoelectron spectroscopy from a flatjet formed by the impingement of two micron-sized cylindrical jets of different aqueous solutions. Flatjets provide flexible experimental templates enabling unique liquid-phase experiments that would not be possible using single cylindrical liquid jets. One such possibility is to generate two co-flowing liquid-jet sheets with a common interface in vacuum, with each surface facing the vacuum being representative of one of the solutions, allowing face-sensitive detection by photoelectron spectroscopy. The impingement of two cylindrical jets also enables the application of different bias potentials to each jet with the principal possibility to generate a potential gradient between the two solution phases. This is shown for the case of a flatjet composed of a sodium iodide aqueous solution and neat liquid water. The implications of asymmetric biasing for flatjet photoelectron spectroscopy are discussed. The first photoemission spectra for a sandwich-type flatjet comprised of a water layer encapsulated by two outer layers of an organic solvent (toluene) are also shown

    Spectroscopic evidence for a gold-coloured metallic water solution

    No full text
    Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2,3,4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6,7,8,9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12,13,14. We found that the explosive behaviour of the water–alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10−4^{−4} millibar onto liquid sodium–potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021^{21} electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies

    Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions

    Get PDF
    We report on the effects of electron collision and indirect ionization processes, occurring at photo-excitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated crossover point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10-14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below similar to 15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes
    corecore