8 research outputs found

    A Comparative Study of Fat Storage Quantitation in Nematode Caenorhabditis elegans Using Label and Label-Free Methods

    Get PDF
    The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans

    Influence of Market Type and Time of Purchase on Bacterial Counts and Salmonella and Listeria Prevalence in Whole Chickens in Vietnam

    Get PDF
    The objective of the current study was to determine the influence of market type and sampling time on Salmonella and Listeria prevalence and bacterial counts of 180 whole chicken carcasses collected from 6 supermarkets (SM), 6 indoor markets (IM), and 6 open markets (OM) in Vietnam, at opening (T0) and 4 h after the opening (T4). Salmonella and Listeria prevalence was at least 25.6% and 42.7%, respectively. Whole birds in IM had greater Salmonella prevalence than birds from both SM and OM by 28.4% and 23.0% (P = 0.006 and 0.022, respectively). Listeria prevalence was lower in whole chickens from SM, at 56.6%, than those in IM and OM (78.6% and 73.2%, P = 0.024 and 0.089, respectively). Whole chicken carcasses had more than 10.1, 7.5, and 9.4 log colony-forming units (CFU)/g of aerobic bacteria, Escherichia coli (E. coli), and coliforms, respectively. Both E. coli and coliform counts were greater in IM than in SM (P = 0.002 and 0.006). However, only E. coli counts differed between SM (7.7 log CFU/g) and OM (8.3 log CFU/g; P = 0.024). These results highlighted high levels of bacteria and high prevalence of Salmonella and Listeria in whole chickens in retail establishments in Vietnam, posing potential food safety and public health risks

    Imaging Immune and Metabolic Cells of Visceral Adipose Tissues with Multimodal Nonlinear Optical Microscopy

    Get PDF
    Visceral adipose tissue (VAT) inflammation is recognized as a mechanism by which obesity is associated with metabolic diseases. The communication between adipose tissue macrophages (ATMs) and adipocytes is important to understanding the interaction between immunity and energy metabolism and its roles in obesity-induced diseases. Yet visualizing adipocytes and macrophages in complex tissues is challenging to standard imaging methods. Here, we describe the use of a multimodal nonlinear optical (NLO) microscope to characterize the composition of VATs of lean and obese mice including adipocytes, macrophages, and collagen fibrils in a label-free manner. We show that lipid metabolism processes such as lipid droplet formation, lipid droplet microvesiculation, and free fatty acids trafficking can be dynamically monitored in macrophages and adipocytes. With its versatility, NLO microscopy should be a powerful imaging tool to complement molecular characterization of the immunity-metabolism interface

    The cardiomyocyte disrupts pyrimidine biosynthesis in non-myocytes to regulate heart repair

    Get PDF
    Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair

    DNA Methylation and Its Basic Function

    No full text
    corecore