1,393 research outputs found
Weighted Modal Transition Systems
Specification theories as a tool in model-driven development processes of
component-based software systems have recently attracted a considerable
attention. Current specification theories are however qualitative in nature,
and therefore fragile in the sense that the inevitable approximation of systems
by models, combined with the fundamental unpredictability of hardware
platforms, makes it difficult to transfer conclusions about the behavior, based
on models, to the actual system. Hence this approach is arguably unsuited for
modern software systems. We propose here the first specification theory which
allows to capture quantitative aspects during the refinement and implementation
process, thus leveraging the problems of the qualitative setting.
Our proposed quantitative specification framework uses weighted modal
transition systems as a formal model of specifications. These are labeled
transition systems with the additional feature that they can model optional
behavior which may or may not be implemented by the system. Satisfaction and
refinement is lifted from the well-known qualitative to our quantitative
setting, by introducing a notion of distances between weighted modal transition
systems. We show that quantitative versions of parallel composition as well as
quotient (the dual to parallel composition) inherit the properties from the
Boolean setting.Comment: Submitted to Formal Methods in System Desig
A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic
We extend the usual notion of Kripke structures with a weighted transition relation and generalize the classical Boolean interpretation of CTL to a map which assigns to states and temporal formulae a real-valued distance describing the degree of satisfaction. We describe a general approach to obtaining quantitative interpretations for a generic extension of the CTL syntax and show that, for one such interpretation, the logic is both adequate and expressive with respect to quantitative bisimulation
Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100
The generation of a flat electron beam directly from a photoinjector is an
attractive alternative to the electron damping ring as envisioned for linear
colliders. It also has potential applications to light sources such as the
generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers.
In this Letter, we report on the experimental generation of a flat-beam with a
measured transverse emittance ratio of for a bunch charge of
nC; the smaller measured normalized root-mean-square emittance is
m and is limited by the resolution of our experimental setup.
The experimental data, obtained at the Fermilab/NICADD Photoinjector
Laboratory, are compared with numerical simulations and the expected scaling
laws.Comment: 5 pages, 3 figure
Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers
Searches for gravitational waves (GWs) traditionally focus on persistent sources (e.g., pulsars or the stochastic background) or on transients sources (e.g., compact binary inspirals or core-collapse supernovae), which last for time scales of milliseconds to seconds. We explore the possibility of long GW transients with unknown waveforms lasting from many seconds to weeks. We propose a novel analysis technique to bridge the gap between short O(s) “burst” analyses and persistent stochastic analyses. Our technique utilizes frequency-time maps of GW strain cross power between two spatially separated terrestrial GW detectors. The application of our cross power statistic to searches for GW transients is framed as a pattern recognition problem, and we discuss several pattern-recognition techniques. We demonstrate these techniques by recovering simulated GW signals in simulated detector noise. We also recover environmental noise artifacts, thereby demonstrating a novel technique for the identification of such artifacts in GW interferometers. We compare the efficiency of this framework to other techniques such as matched filtering
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
Distances for Weighted Transition Systems: Games and Properties
We develop a general framework for reasoning about distances between
transition systems with quantitative information. Taking as starting point an
arbitrary distance on system traces, we show how this leads to natural
definitions of a linear and a branching distance on states of such a transition
system. We show that our framework generalizes and unifies a large variety of
previously considered system distances, and we develop some general properties
of our distances. We also show that if the trace distance admits a recursive
characterization, then the corresponding branching distance can be obtained as
a least fixed point to a similar recursive characterization. The central tool
in our work is a theory of infinite path-building games with quantitative
objectives.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Generation of angular-momentum-dominated electron beams from a photoinjector
Various projects under study require an angular-momentum-dominated electron
beam generated by a photoinjector. Some of the proposals directly use the
angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while
others require the beam to be transformed into a flat beam (e.g. possible
electron injectors for light sources and linear colliders). In this paper, we
report our experimental study of an angular-momentum-dominated beam produced in
a photoinjector, addressing the dependencies of angular momentum on initial
conditions. We also briefly discuss the removal of angular momentum. The
results of the experiment, carried out at the Fermilab/NICADD Photoinjector
Laboratory, are found to be in good agreement with theoretical and numerical
models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam
- …