38 research outputs found

    Characterization and mobility of arsenic and heavy metalsinsoils polluted by the destruction of arsenic-containingshells from the Great War

    No full text
    International audienceDestruction of chemical munitions from World War I has caused extensive local top soil contamination by arsenic and heavy metals. The biogeochemical behavior of toxic elements is poorly documented in this type of environment. Four soils were sampled presenting different levels of contamination. The range of As concentrations in the samples was 1937–72,820 mg/kg. Concentrations of Zn, Cu and Pb reached 90,190 mg/kg, 9113 mg/kg and 5777 mg/kg, respectively. The high clay content of the subsoil and large amounts of charcoal from the use of firewood during the burning process constitute an ample reservoir of metals and As-binding materials. However, SEM–EDS observations showed different forms of association for metals and As. In metal-rich grains, several phases were identified: crystalline phases, where arsenate secondary minerals were detected, and an amorphous phase rich in Fe, Zn, Cu, and As. The secondary arsenate minerals, identified by XRD, were adamite and olivenite (zinc and copper arsenates, respectively) and two pharmacosiderites. The amorphous material was the principal carrier of As and metals in the central part of the site. This singular mineral assemblage probably resulted from the heat treatment of arsenic-containing shells. Microbial characterization included total cell counts, respiration, and determination of As(III)-oxidizing activities. Results showed the presence of microorganisms actively contributing to metabolism of carbon and arsenic, even in the most polluted soil, thereby influencing the fate of bioavailable As on the site. However, the mobility of As correlated mainly with the availability of iron sinks

    Evaluation of antimony availability in a mining context: Impact for the environment, and for mineral exploration and exploitation.

    Get PDF
    This work aims to establish Sb mobility, its transfer to biota and its effect on soil health in a semi-arid climate. The results show the presence of stibnite (Sb2S3) as the main primary Sb compound, bindhemite (Pb2Sb2O6(O,OH)), and minor proportions of stibiconite (Sb3+(Sb5+)2O6(OH)) as oxidised Sb species. This research also observes very high total Sb contents in mining materials (max: 20,000 mg kg−1) and soils (400–3000 mg kg−1), with physical dispersion around mining materials restricted to 450 m. The soil-to-plant transfer is very low, (bioaccumulation factor: 0.0002–0.1520). Most Sb remains in a residual fraction (99.9%), a very low fraction is bound to Fe and Mn oxy-hydroxides or organic matter, and a negligible proportion of Sb is leachable. The higher Sb mobility rates has been found under oxidising conditions with a long contact time between solids and water. The main factors that explain the poor Sb mobility and dispersion in the mining area are the low annual rainfall rates that slow down the Sb mobilisation process and the scarce formation of oxidised Sb compounds. All these data suggest poor Sb (III) formation and a low toxicological risk in the area associated with past mining activities. The low mobility of Sb suggests advantages for future sustainable mining of such ore deposits in a semi-arid climate and is also indicative of the limitations of geochemical exploration in the search for new Sb deposits

    Transfer of inorganic pollutants in a burning ground for organo-arsenical ammunition submitted to an input of organic matter and to saturation/desaturation cycles : a mesocosm study

    No full text
    La destruction par brĂ»lage de munitions chimiques de la PremiĂšre Guerre Mondiale a provoquĂ© une contamination importante de la partie supĂ©rieure du sol du site de la Place-Ă -Gaz par l’arsenic, le zinc, le cuivre et le plomb. Le traitement thermique a eu pour effet de minĂ©raliser l’As des agents de guerre organoarsĂ©niĂ©s, et de former un assemblage minĂ©ral inattendu composĂ© d’arsĂ©niates de Zn, Cu et Fe, et d’une phase amorphe riche en Fe, As, Zn, Cu et Pb. Ce matĂ©riel amorphe est la principale phase porteuse de l’As et des mĂ©taux dans la zone la plus polluĂ©e. Le site est sujet Ă  des changements environnementaux pouvant affecter la stabilitĂ© des contaminants inorganiques. Afin d’évaluer l’impact d’épisodes de saturation en eau et de l’apport de matiĂšre organique sur les cycles biogĂ©ochimiques des mĂ©taux et de l’As, une Ă©tude en mĂ©socosme a Ă©tĂ© menĂ©e. Les rĂ©sultats montrent que la phase amorphe est instable en conditions saturĂ©es, et libĂšre des contaminants dans l’eau interstitielle du sol. Comme sur le site, les contaminants les plus mobiles sont le Zn et l’As. L’addition de matiĂšre organique a induit une immobilisation de l’As, par piĂ©geage de l’As V sur les oxyhydroxydes de fer, dans la partie saturĂ©e du sol. La caractĂ©risation du compartiment microbien a Ă©tĂ© effectuĂ©e via des dĂ©nombrements, une analyse de la diversitĂ© bactĂ©rienne et des tests d’activitĂ©s d’oxydation de l’As III et de respiration et. Les rĂ©sultats montrent que les microorganismes ont contribuĂ© activement au mĂ©tabolisme du C et de l’As. L’apport de matiĂšre organique a promu la croissance des microorganismes As III-oxydants et As VrĂ©ducteurs et modifiĂ© la structure des communautĂ©s bactĂ©riennes. Cependant, un effet nĂ©gatif de la matiĂšre organique sur la vitesse d’oxydation de l’As III a Ă©tĂ© observĂ©, entrainant une augmentation des concentrations d’As III en solution. Cette Ă©tude en mĂ©socosme a montrĂ© que le dĂ©pĂŽt naturel de litiĂšre organique a des consĂ©quences antagonistes sur le transfert des contaminants inorganiques. Ces rĂ©sultats fournissent de plus amples informations sur l’impact environnemental de la Grande Guerre et, de façon plus gĂ©nĂ©rale, sur les processus biogĂ©ochimiques contrĂŽlant le comportement des mĂ©taux/mĂ©talloĂŻdes sur les sites polluĂ©s.The thermal destruction of chemical munitions from World War I, on the site of “Place-Ă -Gaz”, induced intense local top soil contamination by arsenic and heavy metals. The heat treatment mineralized As from organoarsenic warfare agents, resulting in a singular mineral assemblage, composed of Zn, Cu and Fe arsenates and of an amorphous phase rich in Fe, As, Zn, Cu and Pb. The amorphous material was the principal carrier of As and metals in the central part of the site. The site undergoes environmental changes which may alter the stability of inorganic contaminants. To assess the impact of water saturation episodes and input of bioavailable organic matter on the biogeochemical cycles of metal(loid)s, a mesocosm study was conducted. Results showed that amorphous phase was instable in saturated conditions, and released contaminants in soil water. As previously observed on site, the most mobile contaminants were Zn and As. The addition of organic matter induced the immobilization of As by trapping of As V onto hydrous ferric oxides in the saturated soil. Microbial characterizations including counting, bacterial community structure, respiration, and determination of As IIIoxidizing activities were performed. Results showed that microorganisms actively contribute to the metabolisms of C and As.The addition of organic matter induced the increase of As III-oxidizing and As V-reducing microorganisms concentrations and modified the bacterial diversity. However, a negative effect of organic matter on the activity of As III oxidation was observed resulting in higher As III concentration in soil water. This study showed that the natural deposition of forest organic litter on the site, induced antagonist effects on the transfer of inorganic pollutants did not immobilize all the Zn and As and even contributed to As III transport to the surrounding environment. These results provide more information about the environmental impact of the Great War and more generally about the processes driving the behavior of metals/metalloids on polluted sites

    Transfert de polluants inorganiques dans un technosol de brĂ»lage d’armes organo-arsĂ©niĂ©es soumis Ă  un apport de matiĂšre organique et Ă  des cycles de saturation/dĂ©saturation : expĂ©rimentation en mĂ©socosme

    No full text
    The thermal destruction of chemical munitions from World War I, on the site of “Place-Ă -Gaz”, induced intense local top soil contamination by arsenic and heavy metals. The heat treatment mineralized As from organoarsenic warfare agents, resulting in a singular mineral assemblage, composed of Zn, Cu and Fe arsenates and of an amorphous phase rich in Fe, As, Zn, Cu and Pb. The amorphous material was the principal carrier of As and metals in the central part of the site. The site undergoes environmental changes which may alter the stability of inorganic contaminants. To assess the impact of water saturation episodes and input of bioavailable organic matter on the biogeochemical cycles of metal(loid)s, a mesocosm study was conducted. Results showed that amorphous phase was instable in saturated conditions, and released contaminants in soil water. As previously observed on site, the most mobile contaminants were Zn and As. The addition of organic matter induced the immobilization of As by trapping of As V onto hydrous ferric oxides in the saturated soil. Microbial characterizations including counting, bacterial community structure, respiration, and determination of As IIIoxidizing activities were performed. Results showed that microorganisms actively contribute to the metabolisms of C and As.The addition of organic matter induced the increase of As III-oxidizing and As V-reducing microorganisms concentrations and modified the bacterial diversity. However, a negative effect of organic matter on the activity of As III oxidation was observed resulting in higher As III concentration in soil water. This study showed that the natural deposition of forest organic litter on the site, induced antagonist effects on the transfer of inorganic pollutants did not immobilize all the Zn and As and even contributed to As III transport to the surrounding environment. These results provide more information about the environmental impact of the Great War and more generally about the processes driving the behavior of metals/metalloids on polluted sites.La destruction par brĂ»lage de munitions chimiques de la PremiĂšre Guerre Mondiale a provoquĂ© une contamination importante de la partie supĂ©rieure du sol du site de la Place-Ă -Gaz par l’arsenic, le zinc, le cuivre et le plomb. Le traitement thermique a eu pour effet de minĂ©raliser l’As des agents de guerre organoarsĂ©niĂ©s, et de former un assemblage minĂ©ral inattendu composĂ© d’arsĂ©niates de Zn, Cu et Fe, et d’une phase amorphe riche en Fe, As, Zn, Cu et Pb. Ce matĂ©riel amorphe est la principale phase porteuse de l’As et des mĂ©taux dans la zone la plus polluĂ©e. Le site est sujet Ă  des changements environnementaux pouvant affecter la stabilitĂ© des contaminants inorganiques. Afin d’évaluer l’impact d’épisodes de saturation en eau et de l’apport de matiĂšre organique sur les cycles biogĂ©ochimiques des mĂ©taux et de l’As, une Ă©tude en mĂ©socosme a Ă©tĂ© menĂ©e. Les rĂ©sultats montrent que la phase amorphe est instable en conditions saturĂ©es, et libĂšre des contaminants dans l’eau interstitielle du sol. Comme sur le site, les contaminants les plus mobiles sont le Zn et l’As. L’addition de matiĂšre organique a induit une immobilisation de l’As, par piĂ©geage de l’As V sur les oxyhydroxydes de fer, dans la partie saturĂ©e du sol. La caractĂ©risation du compartiment microbien a Ă©tĂ© effectuĂ©e via des dĂ©nombrements, une analyse de la diversitĂ© bactĂ©rienne et des tests d’activitĂ©s d’oxydation de l’As III et de respiration et. Les rĂ©sultats montrent que les microorganismes ont contribuĂ© activement au mĂ©tabolisme du C et de l’As. L’apport de matiĂšre organique a promu la croissance des microorganismes As III-oxydants et As VrĂ©ducteurs et modifiĂ© la structure des communautĂ©s bactĂ©riennes. Cependant, un effet nĂ©gatif de la matiĂšre organique sur la vitesse d’oxydation de l’As III a Ă©tĂ© observĂ©, entrainant une augmentation des concentrations d’As III en solution. Cette Ă©tude en mĂ©socosme a montrĂ© que le dĂ©pĂŽt naturel de litiĂšre organique a des consĂ©quences antagonistes sur le transfert des contaminants inorganiques. Ces rĂ©sultats fournissent de plus amples informations sur l’impact environnemental de la Grande Guerre et, de façon plus gĂ©nĂ©rale, sur les processus biogĂ©ochimiques contrĂŽlant le comportement des mĂ©taux/mĂ©talloĂŻdes sur les sites polluĂ©s

    Sélection d'amendements organiques et minéraux pour diminuer la mobilité de contaminants (Pb, As, Ba, Zn) dans des résidus miniers: apport pour la phytostabilisation assistée

    No full text
    International audienceLes rĂ©sidus miniers sont des sources majeures de contamination en mĂ©taux et mĂ©talloĂŻdes dans l’environnement, de par leur dispersion lors de l’envol de particules ou leur lixiviation et transfert vers les nappes souterraines et les eaux superficielles. La stabilisation physique et gĂ©ochimique de ces rĂ©sidus acides, toxiques, pauvres en nutriments et de texture sableuse constitue un sĂ©rieux dĂ©fi environnemental. En vue de faciliter le dĂ©veloppement d’une couverture vĂ©gĂ©tale et de diminuer la mobilitĂ© du Pb issu des rĂ©sidus d'une ancienne mine d'Ag-Pb, des expĂ©riences de percolation en microcosmes ont Ă©tĂ© rĂ©alisĂ©es pour comparer l’efficacitĂ© d’amendements minĂ©raux et organiques (Thouin et al., 2019). Ces rĂ©sidus ont Ă©tĂ© mĂ©langĂ©s avec 5% en poids d’«ochre», une boue miniĂšre riche en oxy-hydroxydes de fer, et avec du fumier de vache (0, 0,15, 1 et 2% en poids), et le rĂ©sidu non amendĂ© a servi de tĂ©moin. Les microcosmes ont Ă©tĂ© soumis Ă  un arrosage hebdomadaire pendant 84 jours. L’ajout d’ochre a permis d’augmenter le pH de 4 Ă  des valeurs comprises entre 7 et 8 et de diminuer considĂ©rablement la concentration en Pb dissous (de 13 Ă  15 mg.L-1 Ă  0,1 mg.L-1), sans croĂźtre significativement la mobilitĂ© de As, Ba et Zn. Les oxy-hydroxydes de fer ont ainsi adsorbĂ© majoritairement Pb. Une augmentation transitoire de la diversitĂ© microbienne fonctionnelle et d’une lixiviation modĂ©rĂ©e de Pb (0,4 mg.L-1) a Ă©tĂ© observĂ©e par l’ajout de 1% et 2% de fumier avec un pic aprĂšs un mois d’incubation, ces deux phĂ©nomĂšnes Ă©tant liĂ©s Ă  la maturation du fumier. Les microcosmes plantĂ©s ont rĂ©vĂ©lĂ© que la croissance du ray-grass Ă©tait amĂ©liorĂ©e par l’ajout d’ochre et de fumier, avec une biomasse multipliĂ©e par 4,8 comparativement au rĂ©sidu seul. La prochaine Ă©tape expĂ©rimentale concerne le suivi de la phytostabilisation Ă  l'Ă©chelle mĂ©trique, en mĂ©socosme instrumentĂ©, avec les amendements sĂ©lectionnĂ©s et Agrostis capillaris, une espĂšce vĂ©gĂ©tale naturellement prĂ©sente sur le site minier

    Adsorption de l'arsenic présent dans les effluents issus de dépÎts de sargasses par des matériaux riches en oxydes de fer

    No full text
    International audienceLes cĂŽtes du bassin CaribĂ©en subissent depuis 2011 des Ă©chouements saisonniers et massifs d’algues appartenant au genre Sargassum. Les algues collectĂ©es et stockĂ©es Ă  terre libĂšrent, au cours de leur dĂ©gradation et de leur lessivage par les eaux de pluie, l’arsenic (As) qu’elles avaient accumulĂ© en mer, soit de 50 Ă  80 mg d’As par kg d’algue sĂšche. Les effluents ainsi gĂ©nĂ©rĂ©s peuvent contenir jusqu’à plusieurs mg/L d’As (Devault et al., 2020). L’adsorption sur des matĂ©riaux riches en oxydes de fer (Fe) est une des familles de procĂ©dĂ©s couramment appliquĂ©s pour traiter les eaux arsĂ©niĂ©es. L’objectif de la prĂ©sente Ă©tude Ă©tait de dĂ©terminer si l’adsorption sur des matiĂšres minĂ©rales naturelles, riches en Fe et abondantes dans les rĂ©gions affectĂ©es par les Ă©chouements de Sargasse, pourrait ĂȘtre dĂ©veloppĂ©e en tant que stratĂ©gie de traitement des eaux arsĂ©niĂ©es issues des sites de stockage

    Sélection d'amendements organiques et minéraux pour diminuer la mobilité de contaminants (Pb, As, Ba, Zn) dans des résidus miniers: apport pour la phytostabilisation assistée

    No full text
    International audienceLes rĂ©sidus miniers sont des sources majeures de contamination en mĂ©taux et mĂ©talloĂŻdes dans l’environnement, de par leur dispersion lors de l’envol de particules ou leur lixiviation et transfert vers les nappes souterraines et les eaux superficielles. La stabilisation physique et gĂ©ochimique de ces rĂ©sidus acides, toxiques, pauvres en nutriments et de texture sableuse constitue un sĂ©rieux dĂ©fi environnemental. En vue de faciliter le dĂ©veloppement d’une couverture vĂ©gĂ©tale et de diminuer la mobilitĂ© du Pb issu des rĂ©sidus d'une ancienne mine d'Ag-Pb, des expĂ©riences de percolation en microcosmes ont Ă©tĂ© rĂ©alisĂ©es pour comparer l’efficacitĂ© d’amendements minĂ©raux et organiques (Thouin et al., 2019). Ces rĂ©sidus ont Ă©tĂ© mĂ©langĂ©s avec 5% en poids d’«ochre», une boue miniĂšre riche en oxy-hydroxydes de fer, et avec du fumier de vache (0, 0,15, 1 et 2% en poids), et le rĂ©sidu non amendĂ© a servi de tĂ©moin. Les microcosmes ont Ă©tĂ© soumis Ă  un arrosage hebdomadaire pendant 84 jours. L’ajout d’ochre a permis d’augmenter le pH de 4 Ă  des valeurs comprises entre 7 et 8 et de diminuer considĂ©rablement la concentration en Pb dissous (de 13 Ă  15 mg.L-1 Ă  0,1 mg.L-1), sans croĂźtre significativement la mobilitĂ© de As, Ba et Zn. Les oxy-hydroxydes de fer ont ainsi adsorbĂ© majoritairement Pb. Une augmentation transitoire de la diversitĂ© microbienne fonctionnelle et d’une lixiviation modĂ©rĂ©e de Pb (0,4 mg.L-1) a Ă©tĂ© observĂ©e par l’ajout de 1% et 2% de fumier avec un pic aprĂšs un mois d’incubation, ces deux phĂ©nomĂšnes Ă©tant liĂ©s Ă  la maturation du fumier. Les microcosmes plantĂ©s ont rĂ©vĂ©lĂ© que la croissance du ray-grass Ă©tait amĂ©liorĂ©e par l’ajout d’ochre et de fumier, avec une biomasse multipliĂ©e par 4,8 comparativement au rĂ©sidu seul. La prochaine Ă©tape expĂ©rimentale concerne le suivi de la phytostabilisation Ă  l'Ă©chelle mĂ©trique, en mĂ©socosme instrumentĂ©, avec les amendements sĂ©lectionnĂ©s et Agrostis capillaris, une espĂšce vĂ©gĂ©tale naturellement prĂ©sente sur le site minier

    Detection and quantification of As(III)-oxidizing microbes in soils highly polluted by breaking-down of old chemical ammunition during inter-war

    No full text
    International audienceThe open-burning of organo-arsenical compounds present in chemical ammunitions from the First World War was responsible for locally high concentrations of arsenic in top-soil of a highly polluted site from the region of Verdun (France). In order to understand the biogeochemistry of arsenic in this type of environment, quantitative and qualitative characteristics of microbial communities were determined in soil samples with differing As pollution levels. The total concentration of micro-organisms was negatively affected by the pollution level. However the proportion of heterotrophic As(III)-oxidizing organisms and the As(III)-oxidizing rate were higher in the most contaminated than in the less contaminated samples. These results suggest that pollutants, including arsenic, exerted a selective pressure on composition and/or activity of microbial communities

    Development and interpretation of activity test for microbial transformation of inorganic arsenic

    No full text
    International audienceArsenic is one of the more widespread toxic trace elements, whose presence in environment is linked either to geological background or human activities. The fate of arsenic in environmental compartments is closely linked to the microbial transformations of the inorganic species AsIII and AsV. In order to monitor the evolution of microbial As-related global activities, a simple batch test has been designed and applied. The principle of the test is based on the monitoring of oxidation of 1 mM AsIII in a basal medium inoculated with environmental samples. Results are interpreted considering of oxidation rate or rate constant, and lapse time. Several phenomena are likely to influence the global oxidation rate, such as the relative activity of diverse oxidizing microbes and the competition between oxidizing and reducing processes, in relation to organic matter bioavailability. AsIII oxidizing activities of microorganisms in eight surface soils from polluted sites were quantified with and without addition of organic substrates to the basal medium. Results suggested that AsIII oxidation rate constant was limited by the low concentration of organic substrate, this limitation being removed by supplying 0.08 g/L of organic carbon. Higher organic carbon input negatively affected AsIII oxidation rate constant. Then, the AsIII oxidizing test was applied to a soil highly polluted by the destruction of chemical weapons, simultaneously with the enumeration of AsIII-oxidizing microbes using the Most Probable Number method. Results suggested that the concentration of AsIII-oxidizing microbes was correlated with the lapse time and not with the oxidation rate. Experiments performed with a pure AsIII oxidizing bacterium confirmed a correlation between the lapse time and initial concentration of active cells, AsIII oxidation being detected when the bacterial concentration was close to 107 cells ml-1. In these conditions, the oxidation rate was independent from bacterial concentration. In a next step, the influence of microbial AsV reduction parameters will be considered

    Arsenic speciation related to mineral and microbial context in a soil polluted by the destruction of arsenical shells from the Great War

    No full text
    International audienceDuring the period from 1920 to 1928, 200,000 unfired German chemical ammunitions from World War I were broken down and open-burned near the former western Frontline. This destruction resulted in locally severe top-soil contamination by arsenic, heavy metals and dioxins and furans. The main type of shell, called “blue cross shell” were loaded high explosives coating a glass bottle containing solid diphenylchloroarsine (CLARK 1) and diphenylcyanoarsine (CLARK 2) which have released considerable amounts of arsenic oxides during their combustion. The biogeochemical behavior of arsenic is poorly documented in this type of environment. The aim of this study was to explore the arsenic speciation in relation to mineral and microbial compartments in this particular context.. Four soils were sampled presenting different levels of contamination. The concentrations of major and trace elements were analyzed by ICP-MS. In the samples, the concentration range of arsenic was 1937-72,820 mg/kg. Zinc, copper and lead reached concentrations up to 90,190 mg/kg, 9113 mg/kg and 5777 mg/kg, respectively. SEM observations and EDS analyses were performed on different grains. Results showed that the polluted material was composed of inherited minerals (silicates), charcoal and secondary phases, carrier of metals. In metal rich grains, two phases were identified : a crystalline phase, where arsenic was associated with copper and zinc, and an amorphous phase rich in iron, zinc, copper, and arsenic. Four secondary arsenate minerals were identified by X-ray diffraction: adamite and olivenite (zinc and copper arsenates, respectively) and two pharmacosiderites. Arsenic speciation displayed by SEM-EDS and XRD was proven to be directly linked to the thermal treatments of shells. Indeed, the two main As-carriers were identified as vitreous phases, composed of a blend of metals, and secondary arsenates minerals, which were formed in the material’s porosity during its cooling. AsIII and AsV concentrations were 1577 mg/kg and 70,178 mg/kg, respectively : whereas AsV was the major species, AsIII concentration was high. Microbial activities may influence the speciation and mobility of the bioavailable fraction of As, in relation with redox conditions and organic matter. Microbial characterization included total cell counts, respiration, and determination of AsIII-oxidizing and AsV reducing activities. Results showed the presence of microorganisms actively contributing to carbon and arsenic metabolims, even in the most polluted soil, thus potentially driving cycle of biovailable As on the site
    corecore