214 research outputs found

    Consequences of Mechanical and Radiative Feedback from Black Holes in Disc Galaxy Mergers

    Full text link
    We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. Using smoothed particle hydrodynamics simulation code (GADGET-3) we compare three models with different AGN feedback models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad line quasars which show winds with initial velocities of vwv_w \ge 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity 1000\sim 1000 km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of \sim 20 higher than in the thermal feedback case. All merger remnants with momentum-based AGN feedback with vw10,000v_w \sim 10,000 km/s and ϵw=2×103\epsilon_w=2 \times 10^{-3}, independent of their progenitor mass-ratios, reproduce the observed relations between stellar velocity dispersion and black hole mass (MbhσM_{\rm bh} - \sigma) as well as X-ray luminosity (LXσL_X - \sigma) with 1037.510^{37.5} erg/s LX(0.38 keV)1039.2\lesssim L_X (0.3-8~{\rm keV}) \lesssim 10^{39.2} erg/s for velocity dispersions in the range of 120 km/s σ\lesssim \sigma \lesssim 190 km/s. In addition, the mechanical feedback produces a much greater AGN variability. We also show that gas is more rapidly and impulsively stripped from the galactic centres driving a moderate increase in galaxy size and decrease in central density with the mechanical AGN feedback model.Comment: 16 pages, 10 figures, resubmitted to MNRA

    The Dark Halo - Spheroid Conspiracy and the Origin of Elliptical Galaxies

    Full text link
    Dynamical modeling and strong lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., rho_tot ~ r^gamma with gamma approx -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of gamma approx -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved in the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward gamma ~ -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of gamma ~ -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.Comment: Accepted by the Astrophysical Journal, 17 pages, 12 figure

    The Effects of X-Ray Feedback from AGN on Host Galaxy Evolution

    Full text link
    Hydrodynamic simulations of galaxies with active galactic nuclei (AGN) have typically employed feedback that is purely local: i.e., an injection of energy to the immediate neighborhood of the black hole. We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the black hole and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces 3 times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.Comment: 9 emulateapj pages, 8 figures; accepted to Ap

    Reviving stochasticity: uncertainty in SMBH binary eccentricity is unavoidable

    Full text link
    We study supermassive black hole (SMBH) binary eccentricity of equal-mass galaxy mergers in NN-body simulations with the KETJU code, which combines the GADGET-4 fast multipole gravity solver with accurate regularized integration and Post-Newtonian corrections around SMBHs. In simulations with realistic, high eccentricity galactic merger orbits, the binary eccentricity is found to be a non-linear function of the deflection angle in the SMBH orbit during the final, nearly radial close encounter between the SMBHs before they form a bound binary. This mapping between the deflection angle and the binary eccentricity has no apparent resolution dependence in our simulations spanning the resolution range of 1×1058×1061\times10^5 - 8\times10^6 particles per galaxy. The mapping is also captured using a simple model with an analytic potential, indicating that it is driven by the interplay between a smooth asymmetric stellar background potential and dynamical friction acting on the SMBHs. Due to the non-linearity of this mapping, in certain merger configurations small, parsec-scale variations in the merger orbit can result in binary eccentricities varying in nearly the full possible range between e=0e=0 and e=1e=1. In idealized simulations, such variations are caused by finite resolution effects, and convergence of the binary eccentricity can be achieved with increasing resolution. However, in real galaxies, other mechanisms such as nuclear gas and substructure that perturb the merger orbit are likely to be significant enough for the binary eccentricity to be effectively random. Our results indicate that the distribution of these effectively random eccentricities can be studied using even moderate resolution simulations.Comment: 9 pages, 5 figure

    SAURON's Challenge for the Major Merger Scenario of Elliptical Galaxy Formation

    Full text link
    The intrinsic anisotropy delta and flattening epsilon of simulated merger remnants is compared with elliptical galaxies that have been observed by the SAURON collaboration, and that were analysed using axisymmetric Schwarzschild models. Collisionless binary mergers of stellar disks and disk mergers with an additional isothermal gas component, neglecting star formation cannot reproduce the observed trend delta = 0.55 epsilon (SAURON relationship). An excellent fit of the SAURON relationship for flattened ellipticals with epsilon >= 0.25 is however found for merger simulations of disks with gas fractions >= 20%, including star formation and stellar energy feedback. Massive black hole feedback does not strongly affect this result. Subsequent dry merging of merger remnants however does not generate the slowly-rotating SAURON ellipticals which are characterized by low ellipticities epsilon < 0.25 and low anisotropies. This indicates that at least some ellipticals on the red galaxy sequence did not form by binary mergers of disks or early-type galaxies. We show that stellar spheroids resulting from multiple, hierarchical mergers of star-bursting subunits in a cosmological context are in excellent agreement with the low ellipticities and anisotropies of the slowly rotating SAURON ellipticals and their observed trend of delta with epsilon. The numerical simulations indicate that the SAURON relation might be a result of strong violent relaxation and phase mixing of multiple, kinematically cold stellar subunits with the angular momentum of the system determining its location on the relation.Comment: 13 pages, 3 figures, submitted to Ap

    The formation of extremely diffuse galaxy cores by merging supermassive black holes

    Get PDF
    Given its velocity dispersion, the early-type galaxy NGC 1600 has an unusually massive (M=1.7×1010MM_\bullet = 1.7 \times 10^{10} M_\odot) central supermassive black hole (SMBH), surrounded by a large core (rb=0.7r_\mathrm{b} = 0.7 kpc) with a tangentially biased stellar distribution. We present high-resolution equal-mass merger simulations including SMBHs to study the formation of such systems. The structural parameters of the progenitor ellipticals were chosen to produce merger remnants resembling NGC 1600. We test initial stellar density slopes of ρr1\rho \propto r^{-1} and ρr3/2\rho \propto r^{-3/2} and vary the initial SMBH masses from 8.5×1088.5 \times 10^8 to 8.5×1098.5 \times 10^9 MM_\odot. With increasing SMBH mass the merger remnants show a systematic decrease in central surface brightness, an increasing core size, and an increasingly tangentially biased central velocity anisotropy. Two-dimensional kinematic maps reveal decoupled, rotating core regions for the most massive SMBHs. The stellar cores form rapidly as the SMBHs become bound, while the velocity anisotropy develops more slowly after the SMBH binaries become hard. The simulated merger remnants follow distinct relations between the core radius and the sphere-of-influence, and the SMBH mass, similar to observed systems. We find a systematic change in the relations as a function of the progenitor density slope, and present a simple scouring model reproducing this behavior. Finally, we find the best agreement with NGC 1600 using SMBH masses totaling the observed value of M=1.7×1010MM_\bullet = 1.7 \times 10^{10} M_\odot. In general, density slopes of ρr3/2\rho \propto r^{-3/2} for the progenitor galaxies are strongly favored for the equal-mass merger scenario.Comment: Accepted for publication in Ap

    MSTAR - a fast parallelized algorithmically regularized integrator with minimum spanning tree coordinates

    Get PDF
    We present the novel algorithmically regularized integration method MSTAR for high-accuracy (vertical bar Delta E/E vertical bar greater than or similar to 10(-14)) integrations of N-body systems using minimum spanning tree coordinates. The twofold parallelization of the O(N-part(2)) force loops and the substep divisions of the extrapolation method allow for a parallel scaling up to N-CPU = 0.2 x N-part. The efficient parallel scaling of MSTAR makes the accurate integration of much larger particle numbers possible compared to the traditional algorithmic regularization chain (AR-CHAIN) methods, e.g. N-part = 5000 particles on 400 CPUs for 1 Gyr in a few weeks of wall-clock time. We present applications of MSTAR on few particle systems, studying the Kozai mechanism and N-body systems like star clusters with up to N-part = 10(4) particles. Combined with a tree or fast multipole-based integrator, the high performance of MSTAR removes a major computational bottleneck in simulations with regularized subsystems. It will enable the next-generation galactic-scale simulations with up to 109 stellar particles (e.g. m(star) = 100 M-circle dot) for an M-star = 10(11) M-circle dot galaxy), including accurate collisional dynamics in the vicinity of nuclear supermassive black holes.Peer reviewe

    Resolving the Complex Evolution of a Supermassive Black Hole Triplet in a Cosmological Simulation

    Get PDF
    We present here a self-consistent cosmological zoom-in simulation of a triple supermassive black hole (SMBH) system forming in a complex multiple galaxy merger. The simulation is run with an updated version of our code KETJU, which is able to follow the motion of SMBHs down to separations of tens of Schwarzschild radii while simultaneously modeling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation, and stellar and AGN feedback. Our simulation produces initially an SMBH binary system for which the hardening process is interrupted by the late arrival of a third SMBH. The KETJU code is able to accurately model the complex behavior occurring in such a triple SMBH system, including the ejection of one SMBH to a kiloparsec-scale orbit in the galaxy due to strong three-body interactions as well as Lidov-Kozai oscillations suppressed by relativistic precession when the SMBHs are in a hierarchical configuration. One pair of SMBHs merges similar to 3 Gyr after the initial galaxy merger, while the remaining binary is at a parsec-scale separation when the simulation ends at redshift z = 0. We also show that KETJU can capture the effects of the SMBH binaries and triplets on the surrounding stellar population, which can affect the binary merger timescales as the stellar density in the system evolves. Our results demonstrate the importance of dynamically resolving the complex behavior of multiple SMBHs in galactic mergers, as such systems cannot be readily modeled using simple orbit-averaged semianalytic models.Peer reviewe

    The fate of the Antennae galaxies

    Get PDF
    27 pages, 18 figures, submitted to MNRASWe present a high-resolution smoothed particle hydrodynamics simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 33 Gyrs beyond the final coalescence. The simulation includes metallicity dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduces well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters, however the nuclear metallicities are overproduced by 0.5\sim 0.5 dex. Using the radiative transfer code SKIRT we produce multi-wavelength observations of both the Antennae and the merger remnant. The 11 Gyr old remnant is well fitted with a S\'ersic profile of n=4.05n=4.05, and with an rr-band effective radius of re=1.8r_{\mathrm{e}}= 1.8 kpc and velocity dispersion of σe=180\sigma_{\mathrm{e}}=180 km//s the remnant is located on the fundamental plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves onto the red sequence after 2.5\sim 2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λR0.11\lambda_R\approx0.11 to λR0.14\lambda_R\approx0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common among local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379 and NGC 4494) in the ATLAS3D^\mathrm{3D} sample, whose photometric and kinematic properties most resemble the Antennae remnant.We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feed-back and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by similar to 0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sersic profile of n = 7.07, and with an r-band effective radius of r(e) = 1.6 kpc and velocity dispersion of sigma(e) = 180 km s(-1) the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after similar to 2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from lambda(Re) approximate to 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the ATLAS(3D) sample, whose photometric and kinematic properties most resemble the Antennae remnant.Peer reviewe
    corecore