
MNRAS 492, 4131–4148 (2020) doi:10.1093/mnras/staa084
Advance Access publication 2020 January 15

MSTAR – a fast parallelized algorithmically regularized integrator with
minimum spanning tree coordinates

Antti Rantala ,1,2‹ Pauli Pihajoki ,2 Matias Mannerkoski ,2 Peter H. Johansson2

and Thorsten Naab1

1Max-Planck-Institut für Astrophysik, Karl-Schwarzchild-Str 1, D-85748 Garching, Germany
2Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, FI-00560 Helsinki, Finland

Accepted 2020 January 9. Received 2020 January 8; in original form 2019 December 19

ABSTRACT
We present the novel algorithmically regularized integration method MSTAR for high-accuracy
(|�E/E| � 10−14) integrations of N-body systems using minimum spanning tree coordinates.
The twofold parallelization of the O(N2

part) force loops and the substep divisions of the
extrapolation method allow for a parallel scaling up to NCPU = 0.2 × Npart. The efficient
parallel scaling of MSTAR makes the accurate integration of much larger particle numbers
possible compared to the traditional algorithmic regularization chain (AR-CHAIN) methods,
e.g. Npart = 5000 particles on 400 CPUs for 1 Gyr in a few weeks of wall-clock time.
We present applications of MSTAR on few particle systems, studying the Kozai mechanism
and N-body systems like star clusters with up to Npart = 104 particles. Combined with a
tree or fast multipole-based integrator, the high performance of MSTAR removes a major
computational bottleneck in simulations with regularized subsystems. It will enable the next-
generation galactic-scale simulations with up to 109 stellar particles (e.g. m� = 100 M� for
an M� = 1011 M� galaxy), including accurate collisional dynamics in the vicinity of nuclear
supermassive black holes.

Key words: gravitation – methods: numerical – quasars: supermassive black holes – galaxies:
star clusters: general.

1 IN T RO D U C T I O N

Galactic nuclei and their nuclear stellar clusters are among the dens-
est stellar systems in the entire Universe (Misgeld & Hilker 2011).
The nuclei of massive galaxies also host supermassive black holes
(SMBHs) with typical masses in the range of M = 106–1010 M�
(Kormendy & Richstone 1995; Ferrarese & Ford 2005; Kormendy &
Ho 2013), forming a complex, collisionally evolving stellar-
dynamical environment (e.g. Merritt 2013; Alexander 2017). In the
�CDM hierarchical picture of structure formation, galaxies grow
through mergers and gas accretion, resulting in situations where
the collisional evolution of a galactic nucleus is intermittently inter-
rupted and transformed by a merger (e.g. White & Rees 1978; Begel-
man, Blandford & Rees 1980). For gas-poor mergers, the more con-
centrated nucleus with a steeper stellar cusp will determine the struc-
ture of the remnant nucleus immediately after the merger (Holley-
Bockelmann & Richstone 1999; Boylan-Kolchin & Ma 2004).

If both of the merging galaxies host central SMBHs, the SMBHs
will merge through a three-stage process (Begelman et al. 1980).
First, on larger scales, the SMBHs are brought together through
dynamical friction from stars and gas until a hard binary is formed

� E-mail: anttiran@mpa-garching.mpg.de

with a semimajor axis of a ∼ 10 pc. In the second phase, the hard
binary will interact with the stars in the centre of the merger remnant
(Begelman et al. 1980; Milosavljević & Merritt 2001, 2003; Khan,
Just & Merritt 2011), scouring a low-density stellar core in the
process (e.g. Merritt 2006; Lauer et al. 2007; Rantala et al. 2018,
2019). The largest uncertainty in this process is the rate at which the
‘loss cone’ is depleted, but there is an emerging consensus that the
binary will avoid the so-called final-parsec problem and eventually
merge into a single SMBH, even in the collisionless limit (e.g.
Berczik et al. 2006; Vasiliev, Antonini & Merritt 2015; Gualandris
et al. 2017; Ryu et al. 2018; Mannerkoski et al. 2019), with the final
coalescence driven by the emission of gravitational waves (Peters &
Mathews 1963).

If the galaxy merger is gas rich, the evolution of the nucleus
of the merger remnant proceeds very differently. During galaxy
mergers, the resulting asymmetric potential effectively funnels gas
inwards into the central regions, causing a central starburst that
rapidly increases the nuclear stellar density by several orders of
magnitude (e.g. Sanders & Mirabel 1996). In addition, the gas
also plays an important role by causing additional drag on the
SMBHs (Beckmann, Slyz & Devriendt 2018), as well as by forming
circumbinary discs that can have a significant and complicated
effect on the angular momentum evolution of the binary (Tang,
MacFadyen & Haiman 2017; Duffell et al. 2019; Moody, Shi &

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

http://orcid.org/0000-0001-8789-2571
http://orcid.org/0000-0003-1758-1908
http://orcid.org/0000-0001-5721-9335
mailto:anttiran@mpa-garching.mpg.de

4132 A. Rantala et al.

Stone 2019). In general, SMBH mergers are thought to occur very
rapidly in dense gas-rich environments (e.g. Khan et al. 2016)
mainly due to the short duration of the stellar interaction phase
of the binary evolution (Quinlan 1996).

The growth of SMBHs and the formation of binaries in galaxy
mergers have been extensively studied in recent decades. A typical
numerical approach is to use grid codes (Kim et al. 2011; Dubois
et al. 2013; Hayward et al. 2014), smoothed particle hydrodynamics
codes with tree gravity (Springel, Di Matteo & Hernquist 2005;
Mayer et al. 2007; Johansson, Naab & Burkert 2009), or direct
summation codes (Berczik et al. 2006; Khan et al. 2011). The
drawback of grid codes and softened tree codes is that they
cannot properly treat collisional systems as the grid cell size or
the employed gravitational softening length places a strict spatial
resolution limit on the simulation.

Direct summation codes, on the other hand, are very well suited
for studying collisional stellar systems with Npart � 106 particles,
such as globular clusters. However, the steep O(N2

part) scaling of the
direct summation algorithm limits the applicability of this method
to systems with much higher particle numbers. In addition, the most
widely used direct summation codes are rarely coupled with a hydro-
dynamic solver. One possibility is to use on-the-fly code switching
(Milosavljević & Merritt 2001; Khan et al. 2016), but this type
of procedure is typically cumbersome and may introduce spurious
numerical effects into the simulation. We thus argue that a self-
consistent numerical framework for simulating SMBH dynamics in
a realistic collisional environment with a high stellar density and
including also a gas component still remains to be developed. One
of the major obstacles for developing such a code has been the lack
of available fast accurate small-scale collisional post-Newtonian
integrators, which are also straightforward to couple to both large-
scale gravity solvers and hydrodynamical methods.

The most widely used method to treat binaries and close encoun-
ters of simulation particles in the collisional regions of simulations
is the technique of regularization. The key idea of regularization is
to transform the equations of motion of a dynamical system into
a form without coordinate singularities, which makes solving the
dynamics significantly easier using standard numerical integration
techniques (Aarseth 2003). The first such method with practical
numerical applications was the two-body Kustaanheimo–Stiefel
(KS) regularization method (Kustaanheimo & Stiefel 1965), which
transformed both the time and spatial coordinates of the system. A
major step forward for regularized dynamics was the introduction
of the chain concept. By arranging the simulation particles into a
chain of inter-particle vectors, the KS-CHAIN of Mikkola & Aarseth
(1993) reduced the number of required KS transformations from
Npart(Npart − 1)/2 to Npart − 1, yielding a much more efficient
regularization method. In the N-body codes of Aarseth (1999), the
KS-CHAIN treats the mutual encounters of not more than six particles
simultaneously.

A new regularization method, which does not require a coordinate
transformation but only a time transformation, was discovered
by Mikkola & Tanikawa (1999a) and Preto & Tremaine (1999).
This algorithmic regularization (AR) method is faster than the
previous regularization methods and more accurate, especially in
the case of large mass ratios between particles in a N-body system.
Many current direct summation codes (Harfst et al. 2008; Aarseth
2012) and regularized tree codes (Rantala et al. 2017) use an
implementation of the AR-CHAIN integrator (Mikkola & Merritt
2006, 2008) to resolve the small-scale dynamics around SMBHs.

Despite the many successes of regularization methods, their
original design as few-body codes still limits their applicability to

systems with a very large number of particles, which is crucial
for performing galactic-scale simulations at high accuracy. The
regularized tree code KETJU (Rantala et al. 2017) is currently
limited to a particle resolution of Npart � 107 stellar particles
per galaxy, although the underlying tree code GADGET-3 (Springel
et al. 2005) could easily run simulations with ∼10–100 times more
stellar particles, up to Npart ∼ 109 collisionless particles in a single
galaxy. This is because the included AR-CHAIN integrator becomes
impractically inefficient with more than ∼300–500 particles in the
regularized chain region. We note that similar performance issues
with the KS-CHAIN algorithm have already been reported in the
literature; see e.g. Milosavljević & Merritt (2001).

In this paper, we present a new algorithmically regularized (AR)
integrator MSTAR developed and implemented with the aim of
addressing some of the shortcomings of the previous algorithms.
Our new code contains two main improvements compared to
existing AR integrators. First, we use a minimum spanning tree
(MST) coordinate system instead of the chain structure, motivat-
ing the name of the code. We note that regularized integration
algorithms using particular tree structures have been implemented
before: Jernigan & Porter (1989) developed a KS-regularized
binary tree code while Mikkola & Aarseth (1989) proposed a
‘branching’ KS-CHAIN structure for few-body regularization. How-
ever, neither of these methods are widely used today. Secondly,
a major speed-up compared to the previous regularization meth-
ods is achieved by applying a twofold parallelization strategy to
the extrapolation method, which is used in regularized integra-
tors to ensure a high numerical accuracy (Mikkola & Tanikawa
1999b).

The remainder of this paper is organized as follows: In Section 2,
we review our implementation of AR-CHAIN, as the new code MSTAR

was developed based on our earlier experience with the AR-CHAIN

integrator. The numerical procedures of the MSTAR integrator and
the code implementation are discussed in Section 3. We describe and
test the parallel extrapolation method in Section 4. In Section 5, we
perform a number of few-body code tests to validate the accuracy
of the MSTAR code, whereas in Section 6 we perform a number
of scaling and timing tests. Finally, we summarize our results and
present our conclusions in Section 7.

2 AR-C H A I N

2.1 Time transformation of equations of motion

The algorithmic regularization chain (AR-CHAIN) integrator is
designed to perform extremely accurate orbital integrations of
gravitational few-body systems (Mikkola & Merritt 2006, 2008).
The equations of motion of the system are time-transformed by
extending the phase space to include the original time parameter as
a coordinate together with the corresponding conjugate momentum,
equal to the binding energy of the system. A new independent vari-
able is then introduced through a Poincaré time transformation. With
a specific choice of the time transformation function (Mikkola &
Tanikawa 1999a; Preto & Tremaine 1999), the new Hamiltonian
and the equations of motion are separable so that the system can be
integrated using a leapfrog method. This surprisingly yields an exact
orbit for the Keplerian two-body problem even for collision orbits.
The only error is in the time coordinate, or the phase of the Keplerian
binary. However, this error can be removed by a further modification
of the Hamiltonian (Mikkola, Palmer & Hashida 2002), yielding an
exact solver, up to machine precision.

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4133

We start with the standard N-body Hamiltonian H, defined as

H = T − U =
∑

i

1

2
mi‖vi‖2 −

∑
i

∑
j>i

Gmimj

‖r j − r i‖ (1)

in which T is the kinetic energy and U is the force function, equal
to negative of the potential energy. This Hamiltonian yields the
familiar Newtonian equations of motion for the particle positions r i

and velocities vi:

dr i

dt
= vi

dvi

dt
= ai = G

∑
i�=j

mj
r j − r i

‖r j − r i‖3
(2)

in which we have introduced the Newtonian accelerations ai.
Possible additional acceleration terms, such as external pertur-
bations f i depending only on particle positions, or velocity-
dependent perturbations gi(v), such as post-Newtonian corrections,
can be directly added to the Newtonian accelerations, yielding
ai → ai + f i + gi(v).

Next, we perform the time transformation (Mikkola & Tanikawa
1999a; Preto & Tremaine 1999). A fictitious time s is introduced
as a new independent variable. The original independent variable,
physical time t, is promoted to a coordinate of the phase space of the
system, while the binding energy of the system B = −H becomes
the corresponding conjugate momentum. The old and new time
variables are related by the infinitesimal time transformation

dt

ds
= 1

αU + β� + γ
(3)

in which the parameter triplet (α, β, γ) determines the type of
regularization. � is an arbitrary real-valued function of coordinates,
such as the force function for the least massive particles in the
system (Mikkola & Aarseth 2002). With the triplet (1, 0, 0), the
method becomes the logarithmic Hamiltonian (LogH) method of
Mikkola & Tanikawa (1999a) and Preto & Tremaine (1999), while
(0, 1, 0) corresponds to the time-transformed leapfrog introduced in
Mikkola & Aarseth (2002). The ordinary non-regularized leapfrog
is obtained by choosing the triplet (0, 0, 1). Of all the possible
choices, Mikkola & Merritt (2006) recommend using the LogH
option (1, 0, 0) for its superior numerical performance.

Using the LogH time transformation, the equations of motion for
the system become

dt

ds
= 1

T + B

dr i

ds
= 1

T + B
vi (4)

for the coordinates and

dvi

ds
= 1

U
(ai + f i + gi(v))

dB

ds
= − 1

U

∑
i

mivi · (f i + gi(v)) (5)

for the velocities. In this discussion, we omit the � function and
its velocity conjugate. For an unperturbed Newtonian system, i.e.
f i = gi(v) = 0, the derivatives of the coordinates depend only on
the velocities and vice versa; thus, a leapfrog algorithm can be
constructed in a straightforward manner. With non-zero external
tidal perturbations f i, the derivative of the binding energy B depends
on the particle velocities, but the dependence is only linear and
can thus be analytically integrated over the time-step (see e.g. the
appendices A and B of Rantala et al. 2017).

An explicit leapfrog algorithm cannot be constructed if the
post-Newtonian accelerations gi(v) are non-zero. One can, in
practice, approach the problem by iterating the implicit equations
of motion, but this is very inefficient. An efficient post-Newtonian
leapfrog algorithm with velocity-dependent accelerations can be
implemented by extending the phase space of the system with
auxiliary velocities wi. A single leapfrog velocity update (kick) is
replaced by an alternating combination of auxiliary and physical
kicks, performed in a standard leapfrog manner. For additional
details of the auxiliary velocity procedure, see Hellström & Mikkola
(2010) and its generalization by Pihajoki (2015).

Nevertheless, the LogH integrator on its own is not accurate
enough for high-precision solutions of general N-body systems,
even though the systems are regularized against collision singu-
larities. The LogH leapfrog must be supplemented with additional
numerical techniques such as chained coordinates and extrapolation
techniques. These two methods are introduced in Sections 2.2 and
2.3, respectively.

2.2 Chained coordinate system

In AR-CHAIN, the chained inter-particle coordinate system does not
play a role in the regularization procedure itself, unlike in the
earlier KS-CHAIN regularization. However, numerical experiments
(Mikkola & Tanikawa 1999a,b) have shown that the chained coor-
dinate system is very useful in increasing the numerical accuracy of
the method by significantly reducing the numerical floating-point
error.

When constructing the chained coordinates, one first finds the
shortest inter-particle coordinate vector of the N-body system. These
two particles become the initial tail and head of the chain. Next, the
particle closest to either the tail or the head of the chain is found
among the non-chained particles. This particle is added as the new
tail or head of the chain, depending on which end of the chain is
closer. The process is repeated until all particles are in the chain.

Labelling the particles starting from the tail of the chain, the
inter-particle position, velocity, and various acceleration vectors
become

Xk = r jk − r ik ≡ rk+1 − rk

V k = vjk − vik ≡ vk+1 − vk

Ak = ajk − aik ≡ ak+1 − ak

Fk = f jk − f ik ≡ f k+1 − f k

Gk = gjk − gik ≡ gk+1 − gk (6)

in which the last expression on the right-hand side describes the
relabelling of the particle indexes along the chain. Note that there
are Npart − 1 inter-particle vectors for a system of Npart bodies. The
equations of motion for the chained coordinates then become

dt

ds
= 1

T + B

dX i

ds
= 1

T + B
V i (7)

while the velocity equations can be expressed as

dV i

ds
= 1

U
(Ai + Fi + Gi)

dB

ds
= − 1

U

∑
i

mivi · (f i + gi). (8)

It is worthwhile to note that the derivative of the binding energy B
is in fact easier to evaluate by using the original coordinate system

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4134 A. Rantala et al.

than the chained one. For this, the chained velocities need to be
transformed back into the original coordinate system during the
integration.

Finally, the chained coordinate vectors are needed to evaluate
the accelerations ai and gi(v). We use the chained coordinates for
computing the separation vectors for Nd closest particles in the
chain structure while the original vectors are used for more distant
particles, i.e.

r j − r i =

⎧⎪⎪⎨
⎪⎪⎩

rj − r i if |i − j | > Nd

max{i,j}−1∑
k=min{i,j}

sign(i − j)Xk if |i − j | ≤ Nd.
(9)

Typically, Nd = 2 in the literature (Mikkola & Merritt 2008).
In general, selecting values Nd > 2 for the separation parameter
undermines the usefulness of the chain construct as the floating-
point error begins to accumulate when summing many inter-particle
vectors in equation (9).

2.3 GBS extrapolation method

Even though the chained LogH leapfrog with the time-transformed
equations of motion yields regular particle orbits for all non-
pathological initial conditions, the numerical integration accuracy
is usually too low for high-precision applications. Thus, the chained
leapfrog integrator must be accompanied by an extrapolation
method to reach a high numerical accuracy (Mikkola & Tanikawa
1999b). A widely used method is the Gragg–Bulirsch–Stoer (Gragg
1965; Bulirsch & Stoer 1966) or GBS extrapolation algorithm. The
GBS extrapolation method can only be used with integrators that
have an error scaling containing only even powers of the time-
step, but fortunately many simple low-order integrators such as the
mid-point method and the chained leapfrog fulfil this requirement.
In this study, we use only leapfrog-type integrators with the GBS
algorithm.

In general, when numerically solving initial value problems
for differential equations, the numerical solution will converge
towards the exact solution when the step size h of the numerical
method is decreased. The numerical accuracy of integrators with an
extrapolation method is based on this fact. The key idea of the GBS
extrapolation is to successively integrate the differential equation
over an interval H using an increasing number of substeps n. The
integrations are carried out in small steps of length h = H/n using a
suitable numerical method, and the results are then extrapolated to
h → 0. Different substep division sequences nk have been studied
in the literature to achieve converged extrapolation results with a
minimum computational cost (Press et al. 2007). Popular options
include the original GBS sequence (Bulirsch & Stoer 1966), defined
as

{nk} = {2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96 . . . }, (10)

i.e. nk = 2nk−2, k > 2 and the so-called Deuflhard sequence
(Deuflhard 1983) of even numbers

{nk} = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, . . . } (11)

with nk = 2k. In our MSTAR code and throughout this paper, we use
the Deuflhard sequence.

The chained leapfrog sequence with n ≥ 1 substeps can be written
as

D
(

h

2n

)[
K
(

h

n

)
D
(

h

n

)]n−1

K
(

h

n

)
D
(

h

2n

)
, (12)

where the drift D(h) operators advance the coordinates and the kick
operators K (h) the velocity-like variables by the time-step h. The
GBS algorithm starts by computing the first few substep divisions
nk with the leapfrog, after which a rational function or a polynomial
extrapolation of the integration results to h → 0 is attempted. The
error control is enabled with the convergence criterion

‖�Sk‖
‖S(s) + h

n
S ′(s)‖ ≤ ηGBS, (13)

where S is any dynamical variable of the system, �Sk is the
extrapolation error estimate after the k-th substep sequence, and
S(s) and S

′
(s) are the value of the dynamical variable and its time

derivative obtained after the last complete time-step H, respectively.
The GBS tolerance ηGBS is a user-given free input parameter. The
extrapolation can typically be carried out successfully even if ηGBS is
set near the double-precision floating-point precision ηGBS ∼ 10−16.
In the literature, the most typical values of the accuracy parameter
are set in the range of 10−12 ≤ ηGBS ≤ 10−6.

If convergence is not reached after the first few leapfrog step
divisions, the GBS algorithm proceeds to the next substep division
and tries the extrapolation again until convergence, or until the
maximum number of divisions nmax = nkmax , is reached. In the case
of no convergence after the kmax-th substep sequence, the original
step H is halved and the process is started again from the beginning.
After convergence, the criterion for the next time-step Hi + 1 after
convergence is (Press et al. 2007)

Hi+1 = aGBS

(
ηGBS

εk

)1/(2k−1)

Hi, (14)

where εi is the maximum error in the dependent variables from the
previous step, aGBS ∈ (0, 1] is a safety factor (Hairer, Nørsett &
Wanner 2008), and k is the substep sequence at which convergence
was achieved. The GBS algorithm also monitors whether trying
convergence at different k, or equivalently, changing the order 2k −
1 of the method, would lead to convergence with a smaller workload.
The time-step H is then adjusted accordingly, to bring the k where
convergence is expected to the optimal value (Press et al. 2007).

Finally, it should be noted that the extrapolation algorithm used
in AR-CHAIN described above is serial in nature, even though the
particle accelerations in the individual leapfrog sequences can be
computed in parallel as in Rantala et al. (2017). Thus, computing
a large number of subsequent subdivision counts or reaching
the maximum subdivision count kmax without convergence and
restarting with a smaller time-step H/2 can be very time consuming.

2.4 Iteration to exact physical time

We next describe an improvement of the time iteration procedure
in the new MSTAR integrator over our older AR-CHAIN version.
Consider the integration of the equations of motion of a N-body
system over a time interval �t. With the standard leapfrog, there
is no problem in arriving at the correct end time, but with the
time-transformed leapfrog one has to be more careful (e.g. Mikkola
1997).

Integrating the time transformation of equation (3) over a time
interval H = �t with the parameter triplet (1, 0, 0) yields

�s =
∫ �t

0
Udt = G

∑
i

∑
j>i

mimj

∫ �t

0

dt

‖r j − r i‖ . (15)

One can, in principle, approach these Npart(Npart − 1)/2 integrals in
the formula by using the Stumpff–Weiss method, which assumes

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4135

that all the particle motions during the time interval are Keplerian
(Stumpff & Weiss 1968). However, a simple approximation

�s = U�t (16)

typically provides sufficiently accurate results, especially when the
time interval �t is short.

In our AR-CHAIN implementation (Rantala et al. 2017), we begin
the regularized integration by estimating the amount of fictitious
time �s based on the smallest Keplerian time-scale PKepler of the
system. Using equation (16), we have �s = qUPKepler, in which q
is a safety factor 0 < q ≤ 1. After the first step, we let the GBS
algorithm decide the step size until we exceed the output time �t.
Then, we take additional GBS iteration steps towards the correct
exact time until the relative difference between the integrated time
and �t is small enough, typically ∼10−4–10−6. This requires 2–5
iteration steps in most cases.

We improve the time iteration procedure for our new integrator
as the GBS steps are expensive and one should try to converge to
the correct physical time with as few iterations as possible. For the
first step, we already use equation (16) multiplied by a safety factor
instead of the Keplerian criterion. Next, we assume that after a GBS
step has been taken we have arrived at the physical time 0 < τ <

�t. As the GBS routine suggests a new time-step �s, we check that
the estimated time coordinate after the next step τ + �s/U does not
exceed �t. If it does, we set the next fictitious time-step to �s =
U(�t − τ). If we still end up to time τ > �t after integration, we
proceed as in the old method. This procedure typically requires a
few expensive iteration steps less than the approach we used in our
previous AR-CHAIN implementation. The speed-up gained by the
updated iteration procedure depends on �t and the N-body system,
and the maximum expected speed-up occurs in the integration of
very short time intervals.

3 MST COORDINATES

3.1 Shortest Hamiltonian paths and MSTs

The properties of chained inter-particle coordinate systems can be
conveniently expressed by using the language of graph theory (e.g.
Harary 1969). A graph G = (V, E) is an ordered pair of vertices V and
edges E. An edge is determined by the vertices it connects, i.e. Eij =
(Vi, Vj). For our purposes, the N-body particles are the vertices of
the graph while the inter-particle vectors correspond to the edges of
the graph. A graph with N vertices and all possible N(N − 1)/2 edges
is called complete. Complete graphs are also necessarily connected
as any vertex can be reached from any other vertex of the graph.
Each edge E is weighted with a non-negative real number w. We
set the weights of the edges by calculating the Euclidean norm,
i.e. the length of the inter-particle vector corresponding to each
edge.

In graph theory, a path is a sequence of distinct vertices. A
Hamiltonian path is a path that visits each vertex of the graph exactly
once. In a complete graph, Hamiltonian paths are guaranteed to
exist. We note here that the chain structures of AR-CHAIN are in fact
Hamiltonian paths. The problem of finding whether a Hamiltonian
path exists in a given graph is NP-complete, i.e. in the practical
point of view meaning no solution in polynomial time O(Nk)
with k > 0 exists. Furthermore, it can be shown that there is no
polynomial time algorithm to find the shortest Hamiltonian path
of a complete graph (i.e. shortest chain) either. The computational
upper limit of a brute force approach to constructing the shortest
chain scales as O(N !). Thus, strictly speaking, our procedure in

finding the chain of inter-particle vectors in Section 2.2 corresponds
to finding only the approximately shortest Hamiltonian path of
the system. Consequently, there are usually more optimal chained
coordinate systems than the one we find with our chain construction
algorithm, but going through all the possible chain configurations
is not feasible.

A spanning tree T = (V, ET) of the graph G is a subgraph of G
connecting all the vertices of the original graph with a minimum
possible number of its edges. A spanning tree connecting N vertices
has N − 1 edges, the same as the number of inter-particle vectors
in the chain structure of AR-CHAIN. In addition, T is an MST of G
if the sum of the edge weights w in T is the smallest among all the
possible spanning trees of G. It turns out that if the graph G has
unique edge weights w there is a unique MST T. This is usually
the case in practical applications of MSTs, such as our N-body
systems. Unlike for the shortest Hamiltonian path problem, there
are algorithms that find the MST for a given complete graph in a
polynomial time.

There are two important graph properties that aid in finding the
MST or in filtering out edges that are certainly not in the MST
of a graph. The first is the cycle property. A cycle C of graph
G is a path that forms a loop. The cycle property states that the
edge Ei with the highest weight in any cycle C in G cannot be
in the MST of G. The second property is the cut property. We
divide the vertices Vi of G arbitrarily into two distinct groups. The
essence of cut property is that the edge Eij with the minimum
weight connecting the two vertex groups is necessarily in the
MST of G.

3.2 Finding the MST: Prim’s algorithm

The problem of efficiently finding the MST of a given graph has
been extensively studied in the literature, the classic solutions to the
problem being found by Borůvka (1926), Kruskal (1956), and Prim
(1957). We select the classic Prim’s algorithm due to its relative
simplicity and the fact that the algorithm somewhat resembles
the chain construction in our AR-CHAIN implementation with the
difference that the chain is now allowed to branch. In addition,
Prim’s algorithm makes labelling the edge vectors easier for our
purposes than the other two classic algorithms.

Prim’s algorithm proceeds as follows. First, one selects a single
vertex Vi of the graph G. For N-body systems, we suggest starting
from the particle spatially closest to the centre of mass of the
system. Next, the edge Eij with a minimum weight w connected
to the first vertex is found and added as the first edge to the MST.
Then the algorithm proceeds by finding the successive minimum
weight edges among the edges in G connected to the MST and
adds them into the MST until all vertices are connected with the
MST. Our parallel implementation uses sorted adjacency lists on
different tasks to effectively find the consecutive edges to add to
the MST. For complete graphs, even the most sophisticated MST-
finding algorithms typically scale as O(N2) as the Prim’s algorithm
does.

The crucial difference between the chain construction and Prim’s
algorithm manifests itself here. In the chain construction, it is
allowed to add new inter-particle vectors only to the tail and the
head of the chain while in Prim’s algorithm it is allowed to add new
edges to any location in the MST. This ensures that spatially close
N-body particles are always located near each other in the MST
data structure, which is necessarily not the case in the chain. The
differences between a chain and an MST built on a same group of
particles are illustrated in Fig. 1.

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4136 A. Rantala et al.

Figure 1. A two-dimensional illustration highlighting the difference be-
tween a chained coordinate system and the MST coordinates. Both the chain
and the MST are constructed on a collection of 28 points corresponding to
the locations of the brightest stars in the familiar constellation of Orion. The
total length of the MST edges is smaller than the length of the chain. The
chain also occasionally suffers from the fact that spatially close particles
might be distant in the chain, which the MST avoids by branching its tree
structure.

Figure 2. A tree structure with 12 vertices, 11 edges, and 5 levels. The
parent vertex of vertices V2 and V3 is the vertex V1. In addition, the vertex
V1 is the 2nd ancestor of vertex V4. The lowest common ancestor of vertices
V9 and V12 (both in green) is the vertex V7 (in orange).

3.3 Finding the MST: divide-and-conquer method

It is possible to quickly find spanning trees T with a total weight
very close to the total weight of the MST of the graph (e.g. Wang,
Wang & Mitchell Wilkes 2009; Zhong et al. 2013). For simplicity,
we also refer to these approximate minimum spanning trees as
MSTs throughout this study.

Our preferred method is the divide-and-conquer approach to the
Prim’s algorithm. First one divides the original graph G into ∼√

N

subgraphs G
′
. We use a simple octree-based spatial partition to

find these subgraphs. A so-called meta-graph G
′′

is formed by
contracting the subgraphs G

′
into vertices of G

′′
and including

all possible edges between the vertices. The edge weights of the
meta-graph are the minimum edge weights between the subgraphs
by the cut property. Next, we use Prim’s algorithm to construct the
MSTs of each G

′
and the meta-graph G

′′
. To speed up the local MST

construction, we eliminate edges that cannot be in the final MST
using the cycle property before applying Prim’s algorithm. Now we
have all the edges of the total MST, which are then ordered and
labelled by performing a standard tree walk.

We find that the spanning trees T found using the approximate
algorithm are typically 5 per cent longer than the true MST of the
graph. However, this difference is not a serious problem as the
spanning trees are locally true MSTs of the subgraphs. Furthermore,
our motivation to use MSTs is to minimize numerical error originat-
ing mostly from computation operations involving spatially close
particles by choosing a clever local coordinate system. In addition,
the divide-and-conquer approach is faster than the original Prim’s
algorithm. Concerning the speed of the algorithms, we find that
in our code it is always profitable to use the divide-and-conquer
method when the particle number is N � 103. With smaller particle
numbers, both approaches yield very similar results as the wall-
clock time elapsed in the MST construction is negligible.

3.4 MST as a coordinate system

As both the chain and the MST consist of Npart − 1 inter-particle
vectors, the MST coordinate system can be constructed with a recipe
similar to the chained coordinates in equation (6) with relatively
small modifications to the procedure.

First, we need to index the MST edge vectors Eij as in equation (6).
In the chain construct, setting the chained indices is straightforward
as one simply starts the indexing from the tail of the chain and
proceeds towards the head. In the MST, indexing is more compli-
cated because of the branching of the MST structure. However, we
can take full advantage of the fact that the MST is a tree structure.
The first chosen vertex V0 is the root vertex of the MST and gets
the index and level zero in the MST, i.e. L(V0) = 0. We index the
subsequent vertices and edge vectors in the order they were added
to the MST. The vertex levels and the parents of the vertices are
assigned simultaneously as well. A simplified illustration describing
the indexing of our MST structure is presented in Fig. 2. After the
indexing, the inter-particle vectors corresponding to the MST edges
can be computed just as in equation (6) with the additional rule that
all the inter-particle vectors point away from the root vertex, just
as the chained vectors are oriented away from the tail towards the
head of the chain.

Next, we generalize equation (9) to determine the rules when two
vertices are close to each other in the MST, i.e. within Nd edges of
each other, just as in the chain construct. For the force calculation
of the nearby vertices, the MST edge vectors are used while the
original coordinate system is used for the rest of the vertex pairs.
The criterion of two vertices Vi and Vj being within Nd MST edges
of each other can be conveniently expressed by using the lowest
common ancestor (LCA) of the two vertices. The parent vertex is
the 1st ancestor of the vertex, the 2nd ancestor is the parent of the
parent vertex, and so on. The LCA is the vertex among the common
ancestors of both Vi and Vj that has the highest level in the MST.
We label this vertex VLCA. Note that Vi or Vj itself may be the VLCA

of the vertex pair. Now we can state that if

|L(Vi) − L(VLCA)| + |L(Vj) − L(VLCA)| ≤ Nd (17)

the two vertices Vi and Vj are close to each other in the MST. Here,
L(Vi) again signifies the level of the vertex Vi.

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4137

Figure 3. Comparing the mean length 〈Lchain〉 of the chain structure (solid
blue line) and the mean level 〈LMST〉 of particles in an MST (red symbols).
The particle distribution on which the coordinate systems are build follows
a ρ(r) ∝ r−1 density profile. We see that the mean level of particles in the
inter-particle coordinate structure is always lower in the MST by a factor
of ∼2–10. Changing the underlying density profile has a very small effect
on the result. The small mean particle level corresponds to a smaller level
of floating-point error when constructing and deconstructing the coordinate
systems as discussed in the text.

Figure 4. The build, deconstruct, and rebuild test of the two coordinate
systems on a simple N-body system with Npart = 379 particles. With the
chained coordinates (blue line), the energy error is approximately an order
of magnitude larger than with the MST coordinates (red line). The results are
averages over 10 N-body systems with differing random seeds. The coloured
regions represent the scatter of one standard deviation.

Finally, we write down the recipe for selecting which vectors to
use in the force calculation. If Vj and Vi are within Nd edges of each
other, we simply walk the MST from Vi to Vj via VLCA and sum the
traversed edge vectors to obtain the MST separation vector Xk, just
as in equation (9) with the chain. If the condition of equation (17)
does not hold, we use the original coordinate vectors to compute
the separations r j − r i.

3.5 Numerical error from consecutive coordinate
transformations

During integration, the MST (or chain) coordinate structure is
frequently built, deconstructed, and rebuilt to keep the coordinate
structure up to date as the simulation particles move. For N-
body systems with a large number of particles, these coordinate
transformations require a large number of summation operations
(e.g. Mikkola & Aarseth 1993), which introduces a new source of
numerical error in the integration. This fact has received little atten-
tion in the literature thus far, most probably due to the fact that for
few-body systems (Npart � 10) the accumulated summation errors
always remain small. The chain construction and deconstruction
both require summing on average 〈Lchain〉 = (Npart − 1)/2 coordinate
vectors. For MST, the corresponding number is the mean level of
the vertices in the MST, i.e. 〈LMST〉 = 〈L(Vi)〉. Now the choice of
the root vertex in Section 3.1 becomes important. If the root vertex
is spatially close to the centre of mass of the system, 〈LMST〉 should
always be smaller than 〈Lchain〉. We demonstrate this fact in Fig. 3.
Our results show that 〈Lchain〉/〈LMST〉 ∼ 2–10 with particle numbers
of Npart = 10–1000.

This difference somewhat affects the numerical performance
of the two algorithms. We perform an additional numerical test
in which we build, deconstruct, and rebuild the two coordinate
systems consecutively Nrebuild = 105 times while monitoring the
accumulating numerical error. The N-body system on which the
coordinate systems are built contains Npart = 379 particles with
its full details presented in Section 6.1. The results of the rebuild
test are presented in Fig. 4. The results indeed show that the
MST coordinate system accumulates less numerical error than the
chained coordinates, the difference being approximately an order
of magnitude in energy error. Apart from the difference of an
order of magnitude, the cumulative error behaves very similarly
with the two coordinate systems. As the energy error in the chain
coordinate test reaches |�E/E| ∼ 10−13 after Nrebuild = 105 rebuilds,
we conclude that the MST coordinate system is recommended for
regularized N-body simulations requiring extremely high numerical
accuracy.

Finally, we note that advanced floating-point summation methods
such as the Kahan summation (Kahan 1965) or the Neumaier
summation (Neumaier 1974) algorithm might be used to further
diminish the numerical error from the coordinate transforma-
tion operations. However, the inclusion of such more advanced
summation algorithms is left for future work, as our current
MSTAR code is numerically accurate enough for all current target
applications.

4 PA R A L L E L E X T R A P O L AT I O N M E T H O D

4.1 Force loop parallelization

The most straightforward way to begin to parallelize a serial AR
integrator is to parallelize the force computation of the code. The
MPI parallelization standard is adopted for this study. We use
the basic parallelization strategy in which the O(N2

part) iterations
of the force computing loop are divided evenly for Nforce MPI
tasks, speeding up the loop calculation. However, the inter-task
communication required to collect the final results after the force
computations uses an increasing amount of CPU time when the
number of MPI tasks is increased.

In a serial direct summation integrator using a GBS extrapolation
method, the total wall-clock time T elapsed for the force calculation

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4138 A. Rantala et al.

Figure 5. The speed-up factor of the force computation Sforce as a function
of the number of MPI tasks Nforce for four different N-body particle numbers
Npart. The symbols represent the measured force computation speed-up
factors while the solid lines are error function fits (equation 22) to the
speed-up data as described in the text. The speed-up factor initially grows
linearly when Nforce � Npart and saturates to a roughly constant level after
Nforce � 0.1 × Npart.

during the integration of a single step H can be expressed as

T ≈
kmax∑
k=1

nktN
2
part = tN2

part

kmax∑
k=1

nk, (18)

where kmax is the maximum number of GBS substep divisions and
t is a proportionality constant. Without the GBS algorithm, the
sum expression would not appear in the formula. Thus, the wall-
clock time elapsed in the force calculation depends not only on
the particle number Npart but also on the sequence nk introduced in
equations (10) and (11).

We define the speed-up factor of the parallelized force computa-
tion as

Sforce(Nforce) = Tserial

Tparallel(Nforce)
(19)

in which Tserial and Tparallel are the respective wall-clock times
elapsed during the force computation. Assuming ideal zero-latency
communication between the tasks, the speed-up factor Sforce of
the parallelized force calculation scales initially linearly with the
number of MPI tasks, i.e. Sforce ∝ Nforce. The linear scaling behaviour
continues until the number of tasks equals the particle number
Nforce = Npart at which point one MPI task handles one particle. After
this, the speed-up factor Sforce remains constant. With realistic non-
instantaneous inter-task communication, the flat scaling behaviour
is reached with Nforce well below the particle number Npart due to
the increasing communication costs.

We illustrate the results of a series of force computation scaling
tests in Fig. 5. The N-body systems in the test are selected from our
sample of initial conditions with logarithmically spaced particle
numbers in the range 101 ≤ Npart ≤ 104. The results are averages
over three different random realizations of the systems. In the
scaling test, we use 1 ≤ Nforce ≤ 400 MPI tasks. With a small
number of MPI tasks (Nforce � 10), the speed-up factor increased
linearly, as expected. After the linear phase, Sforce(Nforce) flattens
to a constant function at higher Nforce. Eventually, the speed-up
factor actually begins to decrease as the communication costs start

Table 1. The force speed-up coefficients bi and ci obtained by fitting the
data from Fig. 5 using the function equation (22). For the smallest particle
number Npart = 264, fits beyond a single term were not profitable.

Npart b1 c1 b2 c2

264 3.60 5.10 × ×
546 3.24 5.33 3.16 4.97
1129 5.03 9.08 4.02 31.87
2336 6.50 12.35 6.09 79.49

to dominate over the time elapsed in the force computation. We
define the maximum reasonable task number Nmax

force for N-body
systems as the task number in which ∼95 per cent of the maximum
speed-up has been achieved, i.e. Sforce(Nmax

force) = 0.95 × Smax
force. When

Nforce � Nmax
force, the addition of subsequent MPI tasks has only a

negligible effect on the speed-up of the force computation. We find
in our scaling experiments that Nmax

force can be approximated with a
simple relation

Nmax
force ≈ q × Npart (20)

in which the constant factor is between 0.05 ≤ q ≤ 0.1. In addition,
the maximum force computation speed-up factor Smax

force can be
approximated with the formula

log10(Smax
force) ≈ a1 log10(Npart) − a2, (21)

with a1 ≈ 0.505 and a2 ≈ −0.58. For quantifying the behaviour
of the speed-up factor Sforce in the intermediate range of MPI tasks
between the linearly increasing and the constant speed-up factor, a
suitable fitting function is required. A suitable choice is the error
function erf that has the correct asymptotic behaviour both with
small and large values of its argument. We use fitting functions of
the form

Sforce(Nforce) =
Ncoeff∑

i

bi erf (ciNforce) (22)

in which bi and ci are constant coefficients. As expected,∑Ncoeff
i bi ≈ Smax

force by definition. We find that using Ncoeff ≈ 1–2
terms yields good results. The fit coefficients are presented in Table 1
and are later used in Section 4.3 to estimate the optimal division of
computational resources when additional layers of parallelization
are implemented into the extrapolation method of the integrator.

4.2 Substep division parallelization

Solving initial value problems numerically for individual ordinary
differential equations was long considered to be an inherently
sequential process. However, numerical techniques employing ex-
trapolation methods are an important exception to this rule (e.g.
Rauber & Rünger 1997; Korch, Rauber & Scholtes 2011, and
references therein). As the N-body problem is an initial value
problem for a coupled system of ordinary differential equations,
it is possible to introduce another layer of parallelization besides
the parallel force loop computation into N-body codes that use
extrapolation methods. To our best knowledge, the only work
studying orbital dynamics with a code including a parallelized
extrapolation method is the study by Ito & Fukushima (1997).
Unfortunately, this pioneering study has not received wide attention
in the literature.

For the MSTAR code implementation, we use the Neville–Aitken
algorithm (e.g. Press et al. 2007) for polynomial extrapolation.
Error control is implemented as in equation (13) by studying the

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4139

Figure 6. The parallelization strategy of the GBS extrapolation method
without substep parallelization as in our previous AR-CHAIN implementation
(left) and including it in our new MSTAR code (right). In this example, the
extrapolation method converges after six substep divisions. The previous
extrapolation method computes the different substep divisions, tries extrap-
olation, and checks convergence in a sequential manner. The parallelized
extrapolation method computes the different substep divisions in parallel
using different CPU groups, communicates the results to each node, and
then performs the extrapolation procedure.

relative difference of consecutive extrapolation results. We chose
polynomials over rational functions for extrapolation as we have
observed that using rational functions may occasionally lead to
spurious extrapolation results even though the convergence criteria
of equation (13) are fulfilled. We do not use the sophisticated
recipes intended to optimize the amount of computational work
per unit step in serial extrapolation methods, present in some GBS
implementations (Press et al. 2007; Hairer et al. 2008).

Implementing another parallelization layer into an AR integrator
begins with the observation that the computation of a single substep
division in the GBS method is independent of the other required
substep divisions. Thus, the different substep divisions can be
integrated using different CPU groups in parallel (Rauber & Rünger
1997), after which the results of subdivisions are communicated
and the actual extrapolation is performed. The Neville–Aitken
polynomial extrapolation for all the dynamical variables can be
parallelized as well. In this work, we focus on the case of a single
N-body system, but the method described here can be extended to
integrate multiple independent N-body systems simultaneously. A
simple example with two CPU groups and six substep divisions is
illustrated in Fig. 6. We label the number of CPU groups Ndiv. As
we use a single MPI task per CPU, the total number of CPUs, NCPU,
the number of CPU groups, Ndiv, and the number of CPUs in force

computation, Nforce, are connected by the simple relation

NCPU = Ndiv × Nforce. (23)

As stated in Section 2.3, the standard GBS method computes
the substep divisions in a sequential manner, calculating subse-
quent substep divisions until the results converge or the user-
given maximum number of substep divisions kmax is reached. The
parallelization of the substep divisions requires that the number of
substep divisions to be computed must be set by user in advance in
our implementation. We call this fixed number of substep divisions
kfix. We note that techniques to use a non-fixed kmax exist even with
parallelization (Ito & Fukushima 1997) but the simple approach with
a fixed number of subdivisions has proven to be sufficient for our
purposes. The optimal value for kfix depends on the GBS tolerance
parameter ηGBS and the particular N-body system in question. Thus,
numerical experimentation is needed for determining kfix. If kfix is
set to too low a value, the extrapolation method must shorten the
time-step H in order to reach convergence, increasing the running
time of the code. On the other hand, if kfix is too high, extra
computational work is performed as the extrapolation would have
converged with fewer substep divisions. However, this slowdown is
somewhat compensated by the fact that longer time-steps H can be
taken with a higher kfix.

The number of CPU groups Ndiv can have values between 1 ≤
Ndiv ≤ kfix, leaving Nforce = NCPU/Ndiv for the parallelization of the
force computation. The individual substep divisions are divided into
the Ndiv CPU groups with the following recipe. Initially, each CPU
group has the computational load Ci = 0. Starting from the substep
division with the highest number of substeps, i.e. max (nk) = 2kfix,
we assign the substep divisions one by one into the CPU group
that has the lowest computational load Ci at that moment until no
divisions remain. If there are several CPU groups with the same
computational load, we select the first one, i.e. the CPU group with
the lowest CPU group index in the code. Keeping Nforce fixed, we
define the parallel substep division speed-up Sdiv as

Sdiv(Ndiv) = Tserial

Tparallel(Ndiv)
=

∑kfix
k=1 nk

maxi Ci

=
∑kfix

k=1 nk

maxi

([∑Ni
j nkj

]
i

) . (24)

If Ndiv = 1, there is no speed-up in the force computation and the
running time is the same as in equation (18). When Ndiv > 1, there
is a wall-clock time speed-up as the force computation is divided
into multiple CPU groups. With Ndiv = kfix, we have Sdiv = (kfix +
1)/2 assuming the Deuflhard sequence from equation (11).

Now we can compute the speed-up factor Sdiv once kfix and Ndiv

are set. The computed results are presented in Fig. 7. The speed-up
factor follows the line Sdiv = Ndiv until the point Ndiv = kfix/2 is
reached, after which the Sdiv(Ndiv) rapidly flattens into the constant
value of Sdiv = (kfix + 1)/2. Thus, the maximum reasonable number
of CPU groups is Nmax

div = �kfix/2� in which we use the ceiling
function � · �.

4.3 Speed-up with full parallelization

Now we are ready to combine the force loop and the substep division
layers of parallelization. The primary advantage of using two layers
of parallelization compared to the simple force loop computation
parallelization is that we can efficiently use more MPI tasks to speed
up the MSTAR integrator. Without the subdivision parallelization, it

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4140 A. Rantala et al.

Figure 7. The speed-up factor Sdiv for the parallelized substep divisions
(symbols) and their interpolated continuous counterparts (solid lines) as a
function of the number of substep divisions kfix. The interpolants are only
shown to clarify the visualization as there are no groups with non-integer
kmax. We see that Sdiv = Ndiv until Ndiv = kfix/2 after which the speed-up
factor attains a constant value of Smax

div = (kfix + 1)/2.

is not reasonable to use more than Nforce ≈ 0.1 × Npart MPI tasks as
shown in Section 4.1. With the subdivision parallelization included,
the maximum reasonable CPU (or task) number becomes NCPU ≈
0.05 × kfixNpart = 0.4 × Npart with the typical value of kfix = 8. This
is the value of kfix we use in the simulations of this study.

Next, we estimate how the computational resources should be
divided to ensure the maximum total speed-up factor Stotal if the
number of CPUs, NCPU, and thus MPI tasks are fixed. The values of
Npart and kfix are assumed to be fixed as well. The optimal division
of computational resources corresponds to finding the maximum of
the function

Stotal(Nforce, Ndiv) = Sforce(Nforce) × Sdiv(Ndiv)

= Sforce(NCPU/Ndiv) × Sdiv(Ndiv) (25)

with the constraints Nforce, Ndiv ∈ N and NCPU = Nforce × Ndiv. For
arbitrary NCPU, there are typically only a few solutions. For the
force computation speed-up Sforce, we need to use the approximate
methods, i.e. the fitting function equation (22) and its coefficients bi

and ci from Table 1. The substep division speed-up factor Sdiv can
be exactly estimated by using equation (24).

In Fig. 8, we present the speed-up factor Stotal for four different
particle numbers and four different values for NCPU. We set kmax =
8 for each of the 16 combinations of the particle number and the
number of CPUs. For a fixed particle number, the total speed-
up factor Stotal increases until NCPU ∼ 0.4 × Npart. We find that
the maximum of Stotal is typically located near �Ndiv/2�, which
corresponds to finding the optimal Nforce around NCPU/(2Ndiv).

However, we find that the best strategy for finding the optimal
pair (Nforce, Ndiv) is to relax the requirement of having a pre-set
value for NCPU. One computes the values for Stotal for all the integer
pairs (Nforce, Ndiv) satisfying 1 ≤ Nforce ≤ �0.1 × Npart� and 1
≤ Ndiv ≤ �kfix/2�. The location of the maximum value of Stotal

determines which values of Nforce and Ndiv, and thus also NCPU,
should be used. Additional constraints such as the number of CPUs
per supercomputer node should also be taken into account, i.e. NCPU

should be a multiple of this number.

Finally, we present the results of a strong scaling test of our
force calculation algorithms in Fig. 9. In a strong scaling test, the
problem size remains fixed while the number of CPUs is increased.
We examine both the force loop parallelized version and the code
with full parallelization. We see that the force calculation algorithm
with full parallelization follows the ideal scaling behaviour to
higher CPU numbers than the force loop parallelized version.
With the fully parallelized force computation, one can use CPU
numbers approximately up to NCPU ∼ 0.5 × Npart before the scaling
begins to deviate from the ideal case. Including only the force
loop parallelization, the scaling behaviour becomes non-ideal with
roughly 10 times smaller NCPU. We tested the force algorithms up
to NCPU = 400 and all fully parallelized tests with particle numbers
Npart � 103 followed ideal scaling. The total speed-up factors Stotal

are consistent with our estimations in this section.

5 C O D E AC C U R AC Y: FE W- B O DY T E S T S

5.1 Eccentric Keplerian binary

Next, we demonstrate the numerical accuracy of our MSTAR in-
tegrator by studying the standard Keplerian two-body problem by
comparing the results to the analytical solution and to our AR-CHAIN

code (Rantala et al. 2017). In the following sections, we also run
tests with two additional three-body set-ups.

All the simulation runs of this study are run on the FREYA1

cluster of the Max Planck Computing and Data Facility (MPCDF).
Each computation node of FREYA contains two Intel Xeon Gold
6138 CPUs totalling 40 cores per computation node. However, in
the context of this article, we refer to these core units as CPUs.

The Keplerian two-body problem is completely described by its
six integrals of motion. As the final integral, the periapsis time
can be arbitrarily chosen; we only need five integrals of motion to
describe the orbit. The first conserved quantity is the energy E of
the two-body system, defined as

E = 1

2
μ‖v‖2 − GμM

‖r‖ (26)

in which M = m1 + m2, μ = m1m2/M and r and v are the relative
position and velocity vectors, respectively. The energy of the two-
body system uniquely defines its semimajor axis a as

a = −GμM

2E
. (27)

Next, the conserved angular momentum vector L is defined as

L = μr × v. (28)

Together, E and L determine the orbital eccentricity e of the two-
body system as

e =
(

1 + 2EL2

Gμ3M2

)1/2

. (29)

Finally, we have the constant Laplace–Runge–Lenz vector

A = μv × L − GM r̂ (30)

in which r̂ = r/‖r‖. The Laplace–Runge–Lenz vector lies in the
orbital plane of the two-body system pointing towards the periapsis.
As we have now in total seven conserved quantities and only five

1www.mpcdf.mpg.de/services/computing/linux/Astrophysics

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

http://www.mpcdf.mpg.de/services/computing/linux/Astrophysics

A fast regularized integrator 4141

Figure 8. An example of finding the optimal division of computational resources between the force and substep parallelization. The substep part of the
speed-up factor can be computed analytically while the force parallelization part is estimated by using simple numerical tests as explained in the text. Starting
from the top-left corner, the four panels have increasing CPU numbers of NCPU = 100, 250, 750, and 1000. Each panel shows the speed-up factor Stotal as a
function of the number of CPU groups Ndiv for four different particle numbers of Npart = 264 (blue line), Npart = 546 (yellow), Npart = 1129 (green line), and
Npart = 2336 (red line). The maximum speed-up factor Smax

total is typically found near Ndiv = kfix/2. The corresponding number of CPUs for the force computation
is obtained by using the relation Nforce = NCPU/Ndiv.

integrals are required, the conserved quantities cannot be indepen-
dent. The first relation is simply A · L = 0 while the non-trivial
second relation reads e = ‖A‖/(GM), connecting both the energy
E and the norm of the angular momentum vector L to the norm of A.

It is convenient to study the accuracy of a numerical integrator
by observing the behaviour of E, L, and A during a simulation
run. Symplectic integrators such as our chained leapfrog typically
conserve quadratic invariants such as the angular momentum exactly
and the energy approximately but with no long-term secular error
growth (Hairer, Lubich & Wanner 2006). However, the Laplace–
Runge–Lenz vector is a third-order invariant, and its conservation
is not guaranteed. Thus, the orbit can precess in its orbital plane
(e.g. Springel et al. 2005). This makes the rotation angle of the
Laplace–Runge–Lenz vector

θLRL = arctan(Ay/Ax) (31)

a very suitable probe for testing the accuracy of an integrator.
We perform a series of two-body simulations both with our MSTAR

integrator and our AR-CHAIN implementation. For the tests in this

section, serial code implementations are used. We initialize 360
equal-mass SMBH binaries with M = 2 × 109 M�, a = 2 pc, and
e = 0.9. We orient the initial binaries in a random orientation in
space in order to have a sample of binaries with initially the same
integrals of motion but with differing numerical errors during the
simulation. We run the binary simulations for T = 104 × P in which
P is the Keplerian orbital period of the binary. The GBS tolerance
is set to ηGBS = 10−12. We always use kfix = 8 substep divisions in
the serial GBS procedure.

The results of the binary simulations are presented in Figs 10
and 11. The panels of Fig. 10 illustrate the relative error of the
energy and the norm of the angular momentum vector as well as
the absolute rotation angle of the Laplace–Runge–Lenz vector. In
addition, we show the maximum GBS error εGBS after convergence
in each step. Fig. 11 in turn presents the elapsed wall-clock time, the
GBS step fail rate, and the length of the fictitious time-step during
the simulations.

The results of the binary simulations systematically show that the
new MSTAR implementation conserves the orbital energy E, angular

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4142 A. Rantala et al.

Figure 9. The strong scaling test of the force loop parallelized (solid blue
line) and the fully parallelized (solid red line) force computation algorithms.
The serial running time per GBS step corresponds to equation (18). The
dashed red line shows the ideal scaling behaviour of the codes. The fully
parallelized algorithm follows the ideal scaling behaviour up to NCPU ∼
0.5 × Npart while the loop parallelized algorithm begins to deviate from the
ideal scaling law already with roughly 10 times smaller CPU numbers.

momentum L, and the Laplace–Runge–Lenz vector A ∼1–2 orders
of magnitude better than our old AR-CHAIN implementation. In
addition, the new code is faster than the old code by a factor of few.
The difference in the code speed originates from the fact that the
GBS recipe of Hairer et al. (2008) that we are using in our AR-CHAIN

implementation optimizes the computational work per unit step and
also aggressively attempts longer steps H after convergence. This
leads to a large number of failed GBS steps, slowing down the code
in the test. However, the implementation is not very transparent and
thus it is somewhat difficult to point to exactly where the speed and
accuracy differences originate compared to our own implementation
of the extrapolation algorithm in MSTAR.

5.2 Pythagorean three-body problem

The Pythagorean three-body problem (Burrau 1913; Szebehely &
Peters 1967) is a famous zero angular momentum set-up to test inte-
grators and to study chaotic and orderly motion in a relatively simple
gravitating system (Aarseth et al. 1994; Valtonen & Karttunen
2006). Three SMBHs with masses of M1 = 3 × 108 M�, M2 =
4 × 108 M�, and M3 = 5 × 108 M� are placed at the corners of a
right-angled triangle with side lengths of r13 = 30 pc, r12 = 40 pc,
and r23 = 50 pc, i.e. in such a manner that the least massive SMBH
is opposite to the shortest side and so on. Initially, all velocities
are set to zero. Once the simulation run is started, the three bodies
experience a series of complicated interactions finally resulting in
the ejection of the least massive M1 body while the remaining two
SMBHs form a bound binary recoiling to the opposite direction.

The final outcome of the system can be parametrized by the
orbital elements (a2, 3, e2, 3) of the formed binary and the escape
direction β1. If the initial triangle set-up is oriented as in fig. 1 of
Aarseth et al. (1994), the escape angle becomes

β1 = arctan(y1/x1) (32)

in which the subscript refers to the least massive SMBH. The system
is extremely sensitive to the initial conditions and the numerical

accuracy of the used integrator, thus providing an ideal test set-
up for demonstrating that our old AR-CHAIN and the new MSTAR

implementations yield the same final results.
We perform the integration with the same code parameters as

the two-body tests. We show the orbits of the three SMBHs in
the Pythagorean three-body problem in Fig. 12 both with the old
AR-CHAIN and the new MSTAR integrator. The overall behaviour
of the system is as expected from the literature results: the least
massive body becomes unbound and the binary of the two remaining
bodies recoils in the opposite direction. At this level of scrutiny,
there are no noticeable differences between the two integrator
implementations.

The escape angle β1, as well as the orbital elements of the
pair of two most massive bodies, is presented in Fig. 13. After
a period of complicated gravitational dynamics, the values of β1,
a2, 3, and e2, 3 settle to their final values as the motion of the system
becomes ordered after the escape of the least massive SMBH.
Both the AR-CHAIN and the MSTAR integrator implementations
provide the results β1 ≈ 71.4◦, a2, 3 ≈ 5.5 pc, and e2, 3 ≈ 0.99
with a relative difference of only ∼10−4 in each value. Due to
the extreme sensitivity of the Pythagorean three-body problem
to numerical errors during integration, we conclude that the two
integrators produce the same results within an accuracy sufficient
for our purposes. These final results also agree very well with the
literature values (Szebehely & Peters 1967; Aarseth et al. 1994).

5.3 Lidov–Kozai oscillations

The Lidov–Kozai mechanism (Kozai 1962; Lidov 1962) is a widely
studied dynamical phenomenon present in a family of hierarchi-
cal three-body systems. The mechanism has a large number of
applications in dynamical astronomy, reaching from dynamics of
artificial satellites to systems of SMBHs (Naoz 2016). An inner
binary consisting of a primary and a secondary body is perturbed
by a distant orbiting third body. The inner binary and the perturber
form the outer binary. The time-varying perturbation causes the
argument of pericentre of the secondary body to oscillate around a
constant value. Consequently, the eccentricity and the inclination of
the inner binary with respect to the orbital plane of the outer binary
oscillate as well. The time-scale of the oscillations exceeds by far
the orbital periods of the inner and outer binaries.

In the limit of the secondary body being a test particle, the
quantity

lz =
√

1 − e2
2 cos i2 (33)

is conserved. Here, the subscripts of the orbital elements refer to the
secondary body with respect to the primary body. The Lidov–Kozai
oscillations are present in the three-body system if the inclination
i0 of the secondary exceeds the critical value icrit, defined as

icrit = arccos

(√
3

5

)
, (34)

which is approximately icrit ≈ 39.2◦. The maximum achievable
eccentricity emax depends only on the initial inclination i0 as

emax =
√

1 − 5

3
cos 2i0. (35)

We set up a hierarchical three-body system with masses of
M1 = M3 = 109 M� and M2 = 103 M� using the following orbital
parameters. The outer binary is circular (eouter = 0) with a semimajor
axis of aouter = 20 pc. The inner binary is initially almost circular

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4143

Figure 10. Results of the SMBH binary simulations with our AR-CHAIN implementation (blue) and MSTAR (red). Starting from the top left panel, the four
panels show the maximum extrapolation error εGBS after an accepted step, the relative error in energy E and angular momentum Lz and the rotation angle of
the Laplace–Runge–Lenz vector θLRL. The error regions depict a single standard deviation. The lower scatter in the maximum extrapolation error in MSTAR

indicates that the code does not exceedingly increase the step size after a successful step, which would lead to divergence and step split during the next step.
Our the new code clearly performs better than our AR-CHAIN implementation with the numerical errors being smaller throughout.

(einner = 10−3) and has a semimajor axis of ainner = 2 pc. The
orbital plane of the secondary is initially inclined i0 = 80◦ with
respect to the orbital plane of the outer binary, exceeding the critical
inclination icrit so the system exhibits Lidov–Kozai oscillations. The
test-particle approximation predicts the maximum eccentricity of
emax ≈ 0.975 for the system.

We simulate the evolution of the three-body system for 100 Myr
using both the AR-CHAIN and MSTAR integrators. The integrator
accuracy parameters are identical to the ones in the previous
section. The oscillations of eccentricity and inclination of the
secondary during the simulation are presented in Fig. 14. The system
experiences roughly 10 strong oscillations in 100 Myr, reaching a
maximum eccentricity of emax = 0.983. The minimum inclination
during the oscillations is very close to the critical value of icrit ≈
39.2◦. The system evolves practically identically when run with the
old AR-CHAIN and the new MSTAR integrator. The relative difference
of the value of emax with the two integrators is only of the order
of 10−8.

6 C O D E SC A L I N G A N D T I M I N G : N- B O DY
TESTS

6.1 N-body initial conditions

We construct gravitationally bound clusters of equal-mass point
particles in order to perform code timing tests. We use 20 different
particle numbers, Npart, selected logarithmically between Npart =
101 and 104 particles with three different random seeds for each
run, totalling 60 cluster initial conditions. The particle positions are
drawn from the spherically symmetric Hernquist sphere (Hernquist
1990) with a density profile of

ρ(r) = M

2π

aH

r(r + aH)3
, (36)

where M is the total mass of the system and aH its scale radius.
We set M = 107 M� and aH in such a manner that the half-mass
radius of the system equals r1/2 = 10 pc. The particle velocities

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4144 A. Rantala et al.

Figure 11. Additional results of the binary simulations with our previous
AR-CHAIN implementation (blue) and the new code (red). The top panel
presents the wall-clock times spent by the integrators with the new imple-
mentation being 2–3 times faster than the old one. The middle and bottom
panels show the GBS step fail rate and the GBS step size H in fictitious
time �s. These panels confirm that the new AR-CHAIN implementation is
faster in two-body tests due to its factor of ∼2.5 smaller GBS step fail
rate.

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
x [kpc]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y
[k

pc
]

Rantala+17

This Work

Figure 12. The general overview of the orbits of the three bodies in the
Pythagorean three-body problem. Initially, the three bodies are gravitation-
ally bound, but after a series of complicated interactions the least massive
body (black line) is ejected while the other two bodies (red and blue) form
a bound binary recoiling at the opposite direction. By eye, there are no
noticeable differences in the results with the two integrators.

Figure 13. The three variables β1, a2, 3, and e2, 3 parametrizing the outcome
of the Pythagorean three-body problem as described in the main text. The
results of the MSTAR and the AR-CHAIN integrator always agree within a
relative factor of 10−4.

are sampled from the Hernquist density–potential pair using the
Eddington’s formula technique (e.g. Binney & Tremaine 2008).

Even though we do not intentionally include primordial binaries
in our cluster construction set-up, binaries may still form when
sampling particle positions and velocities. A binary is considered
hard if its binding energy exceeds the average kinetic energy of a
particle in the cluster, i.e.

GμM

2a
� 1

2
mσ 2, (37)

where m is the mass of a single particle and σ is the velocity
dispersion of the cluster. While our MSTAR integrator can easily
compute the dynamics of hard binaries, the possible existence
of such binaries is problematic for the N-body timing tests. This
is because an integrator using the LogH (or equivalent) time
transformation can propagate physical time only for an amount
�t per one step, where �t is of the order of the orbital period P of
the hardest binary in the cluster, defined as

P = 2π

(
a3

GM

)1/2

(38)

by the Kepler’s third law. Consequently, the total running time of
the simulation will scale as �t−1 ∝ a−3/2. This is very inconvenient
as the clusters with the same Npart but a different binary content
may have a very large scatter in their simulation times up to several
orders of magnitude. Thus, we exclude all clusters that contain even
a single hard binary and generate a new cluster until we have 60
clusters in total. For the same reason, we do not include a single
heavy point mass (SMBH) at the centre of the cluster as the orbital

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4145

Figure 14. The Lidov–Kozai mechanism test with the AR-CHAIN (blue
line) and the MSTAR integrator (red line). The hierarchical three-body
system shows strong oscillations both in the inclination (top panel) and
the eccentricity (bottom panel) of the secondary body. The results of the
two integrators agree very well with each other and analytical estimates as
described in the text.

period of the most bound light particle (star) would then determine
the running time of the simulation.

6.2 Strong scaling tests

We perform a series of strong scaling tests to study the overall
scaling behaviour of our MSTAR integrator. The results of the strong
scaling test of the force calculation part of the code were presented
in Fig. 9. As before in a strong scaling test, the problem size remains
fixed while the number of CPUs is increased. In our six tests, we
use six different logarithmically spaced particle numbers with 264
≤ Npart ≤ 104 as in Section 4.3. The strong scaling tests consist of in
total 270 short N-body simulations with initial conditions described
in the previous section. In the simulations, each of the point-mass
clusters is propagated for T = 0.1 Myr, which is close to the crossing
times of the point-mass clusters. The GBS tolerance is set to ηGBS =
10−6 in these tests. We test CPU numbers up to NCPU = 400. The
CPU number NCPU is always divided between the force loop tasks
(Nforce) and substep parallelization (Ndiv) in a way that minimizes
the simulation running time as explained in Section 4.3.

The results of the strong scaling tests are shown in Fig. 15. The
maximum speed-up factors with NCPU = 400 range from Stotal ≈
15 with Npart = 264 to Stotal ≈ 145 when Npart = 104. At this point,
the scaling of the set-up with the lower particle number Npart is
completely saturated while the set-up with Npart = 104 would still
benefit from additional computational resources. However, we do

Figure 15. The results of the strong scaling test of our MSTAR integrator
(solid red line). The ideal scaling behaviour is indicated by the dashed red
line. The scaling behaviour of the integrator begins to deviate from the ideal
scaling law around NCPU ∼ 0.1 × Npart and it is completely saturated around
NCPU ∼ 0.2 × Npart. The test set-ups with the two highest particle numbers
tested retain the ideal scaling behaviour up to the largest CPU number used
in these tests, NCPU = 400.

not pursue numerical experiments beyond NCPU = 400 in this study.
We find that the integrator follows ideal scaling behaviour roughly
up to the CPU number of NCPU ∼ 0.1 × Npart and a flat, saturated
scaling occurs with NCPU � 0.2 × Npart. The scaling of the entire
code starts to deviate from the ideal scaling behaviour at a factor of a
few smaller NCPU than the scaling of only the force calculation part
of the code. We attribute this difference to Amdahl’s law (Amdahl
1967), which states that maximum speed-up of a parallelized
code depends on the fraction of serial code or code that cannot
be efficiently parallelized. The force calculation part of the code
can be almost entirely parallelized except for the necessary MPI
communication between the CPUs. The entire integrator contains
additional parts that cannot be parallelized as efficiently as the
force computation. The main functions containing these serial code
sections or functions that are difficult to parallelize efficiently are the
MST construction functions and the GBS extrapolation procedure.

6.3 Timing tests

We perform another set of N-body simulations to evaluate how
much faster the parallelized version of the MSTAR integrator is
than our AR-CHAIN implementation in Rantala et al. (2017). In the
simulations, each of the 60 point-mass clusters is again propagated
for T = 0.1 Myr with a GBS tolerance of ηGBS = 10−6. The other
parameters remain as in the previous sections.

We test four different integrator configurations. The integrator
details are collected in Table 2. Our old AR-CHAIN implementation
is used both in a serial mode (R17-S-1) and a parallel mode (R17-
P-24) with 24 CPUs as in Rantala et al. (2017). We test the MSTAR

integrator in serial and parallel modes as well (R20-S-1 and R20-
P-max). In the test set-up R20-P-max, we experimented with CPU
numbers within 2 ≤ NCPU ≤ 400 and chose the NCPU that gave the
smallest running time for each particle number. In general, adding
more CPUs speeds up the computation until the scaling stalls around
NCPU ∼ 0.2 × Npart as already illustrated in Fig. 15. This type of test
is not performed with our old AR-CHAIN integrator as the scaling of

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

4146 A. Rantala et al.

Table 2. The integrators and their serial/parallel configurations studied in
the running time test. In the set-up R20-P-max, we selected the CPU number
within 2 ≤ NCPU ≤ 400 for each particle number, which yielded the fastest
simulation times.

Label Integrator Mode Resources

R17-S-1 AR-CHAIN serial 1 CPU
R17-P-24 AR-CHAIN parallel 24 CPU
R20-S-1 MSTAR serial 1 CPU
R20-P-max MSTAR parallel 2-400 CPU

Figure 16. The timing test of our AR-CHAIN (blue) and MSTAR (red)
integrators. The parallel runs are indicated with the filled squares while the
serial runs are labelled with the open circles. Benchmarks of 1 d, 1 week,
and 1 month are also included. The grey shaded area marks the region
that we deem too time consuming for practical applications. We note that
the new MSTAR serial code is even faster than the old parallel AR-CHAIN

integrator and that the new parallel code is extremely fast compared to the
other implementations, especially for large particle numbers.

the code becomes poor beyond a few tens of CPUs (Rantala et al.
2017).

The wall-clock times elapsed in the timing tests of the four
integrator configurations are presented in Fig. 16 as a function
of the particle numbers of the simulated clusters. The results are
scaled into the units of wall-clock time in seconds per simulated
Gyr. We restrict our tests to simulations that last less than 109 s
of wall-clock time in the scaled units. Studying the results with the
AR-CHAIN integrator first, we see that the parallel implementation is
faster than the serial version in the particle number range 50 � Npart

� 700. Our simulations in previous studies (Rantala et al. 2018,
2019) have used regularized particle numbers in the lower half of
this range. With lower particle numbers, the communication time
exceeds the speed-up from parallelized force loops. The slowdown
of the parallelized old integrator at high particle numbers Npart �
700 is attributed to the fact that the code is only partially parallelized
as serial functions still remain in the parallelized version.

Comparing the serial implementations of the MSTAR and the
AR-CHAIN integrator (R17-S-1 and R20-S-1), we see that the new
integrator is faster by a factor of ∼6 when Npart � 100. The speed
difference of the two serial codes reaches its minimum value of
∼2 around Npart = 103. After this, the speed difference of the
codes begins to increase again, reaching a value of ∼8 at Npart =

5 × 103. We note that the MSTAR serial implementation R20-S-
1 is even faster than the AR-CHAIN parallel version R17-P-24 in
every simulation we run for this study. Code run-time performance
analysis tools reveal that the cache efficiency of our AR-CHAIN

code is poor compared to the new MSTAR code. This fact explains
the run-time speed difference of the two serial codes. All the four
integrator configurations fairly closely follow the O(N2

part) scaling,
being consistent with the theoretical scaling of the regularization
algorithm of O(N2.13−2.20

part).
Studying the results of the MSTAR integrator, we can see that

the parallel set-up R20-P-max is always faster than the serial set-up
R20-S-1, even with small particle numbers. In addition, the test
runs with R20-P-max become increasingly faster than the serial
set-up towards high particle numbers. Within 103 � Npart � 104, the
speed-up factor is ∼55–145. Compared to the fastest old AR-CHAIN

implementation, the new parallel MSTAR code is faster by a very
large factor of ∼1100 in this range of particle numbers.

The adopted GBS accuracy parameter affects the wall-clock time
elapsed in the simulations. We perform an additional brief series of
timing tests using MSTAR with simulation parameters Npart = 1129,
NCPU = 200, and 10−12 ≤ ηGBS ≤ 10−6. We find that in our tests the
elapsed wall-clock time T scales well as a power law as

T

T (ηGBS = 10−6)
=

(ηGBS

10−6

)−α

(39)

in which the power-law index α ≈ 0.05 when 10−10 � ηGBS ≤ 10−6

and α ≈ 1 when ηGBS � 10−10. Due to the mild scaling of the wall-
clock time T as a function of the GBS accuracy parameter ηGBS, we
conclude that the results in the section run with ηGBS = 10−6 apply
in general for GBS tolerances ηGBS � 10−10. However, we stress that
the timing results of the codes depend on the N-body particle set-ups
used, with more centrally concentrated stellar systems requiring in
general more computational time.

Finally, we end this section by discussing how large simulations
can be run with our new MSTAR code within a reasonable wall-
clock time. We have marked the running times of 1 d, 1 week, and 1
month in Fig. 16. The grey area in the illustration marks the running
times beyond 1 month per Gyr, which we consider unacceptably
time consuming. The parallel MSTAR code can perform simulations
with of the order of 10 times more N-body particles with similar
wall-clock times as our old integrator implementations. Simulations
with 4000–7000 particles are expected to last a few weeks with the
parallel MSTAR code with NCPU = 400. Running a simulation with
Npart = 104 in a similar wall-clock time would require NCPU ≈ 2000
cores.

7 C O N C L U S I O N S

We have developed and implemented the MSTAR integrator, a new
fast AR integrator. While the time transformation scheme of the
regularized integrator remains the same as in the earlier AR-CHAIN

integrator, the coordinate system and the GBS extrapolation method
are significantly improved. A brief summary of the main ingredients
of our integrator code and a selection of related integrators from the
literature is collected in Table 3.

In our new MSTAR implementation, the chained coordinate
system of AR-CHAIN is replaced by an MST coordinate system,
which can be viewed as a branching chain structure. Due to its
ability to branch, the MST avoids the possible pathological chain
configurations in which spatially close particles can be found
in very different parts of the chain. We find that the numerical
error originating from building and deconstructing the coordinate

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

A fast regularized integrator 4147

Table 3. A brief summary of the main properties of the MSTAR integrator presented in this work alongside related integration
methods from the literature.

Ito & Fukushima (1997) Mikkola & Merritt (2008) Rantala et al. (2017) This work

Regularization × � � �

Extrapolation method � � � �

Chained coordinates × � � �

MST coordinates × × × �

Serial code � � � �

Parallel force loops × × � �

Parallel GBS subdivisions � × × �

structures is approximately smaller by a factor of ∼10 for the MST
compared to the chain. The reason for this is that the MST is a much
shallower data structure than the chain as the average number of
inter-particle vectors to reach the root vertex of the system is smaller.
Thus, we recommend using the MST coordinate system instead
of the chained coordinates even though the code implementation
becomes somewhat more complicated.

Our MSTAR integrator includes a simplified GBS extrapolation
method with two layers of MPI parallelization. First, the force
loop computation is parallelized with Nforce CPUs with one MPI
task each. The second layer is included in order to compute the
kfix substep divisions in parallel using Ndiv CPU groups. We also
provide a recipe for estimating how to divide the computational
resources to the different parallelization layers and estimates for the
maximum reasonable number of CPUs for parallelization before
the code scaling stalls.

We validate the numerical accuracy of our MSTAR integrator
in a series of demanding two- and three-body test simulations. The
simulation set-ups include an eccentric Keplerian binary, the classic
Pythagorean three-body problem, and Lidov–Kozai oscillations in
a hierarchical three-body system. Overall, the particle orbits in the
test runs are practically identical with both the MSTAR and AR-CHAIN

integrators. In fact, MSTAR conserves energy, angular momentum,
and the direction of the Laplace–Runge–Lenz vector somewhat
better than our previous regularized integrator AR-CHAIN.

We test the speed and scaling behaviour of the MSTAR integrator
in a series of N-body stellar cluster simulations with up to Npart = 104

particles. We find that the new integrator is always faster than the AR-
CHAIN. With full parallelization, we can efficiently use ∼10 times
more CPUs with adequate code scaling behaviour compared to
our integrator implementation with only force loop parallelization.
The speed-up gained by the new fully parallelized integrator is
substantial. The parallel MSTAR code is up to a factor of ∼145
faster than the serial MSTAR code and up to a factor of ∼1100 faster
than the AR-CHAIN code when the simulation particle number is in
the range 103 � Npart � 104.

The MSTAR integrator will be important when pressing towards
the ultimate goal of running collisionless simulations containing
regularized regions with collisional stars and SMBHs with up to
Npart ∼ 5 × 108–109 simulation particles in individual galaxies.
We estimate that the MSTAR integrator is able to run a Gyr-long
simulation with Npart = 104 in approximately two weeks of wall-
clock time using NCPU ≈ 2000 CPUs. In our previous studies
with the KETJU code (Rantala et al. 2017), which couples the
GADGET-3 tree code to the AR-CHAIN integrator, the total particle
number in galaxies was limited to Npart � 107 particles (Rantala
et al. 2018, 2019). This is due to the fact that our AR-CHAIN

integrator could efficiently handle only up to 200–300 particles
in the regularized regions. Based on these numbers, we estimate

that MSTAR can treat ∼50 times more regularized particles than
our AR-CHAIN implementation in a reasonable wall-clock time.
Thus, galaxy simulations with accurate SMBH dynamics using
MSTAR in KETJU instead of AR-CHAIN containing 5 × 108 �
Npart � 109 simulation particles seem achievable in the immedi-
ate future. These particle numbers yield stellar mass resolutions
down to m� ≈ 100 M� even for simulations of massive early-type
galaxies.

Finally, the improved numerical scaling and performance will
be crucial when simulating the dynamics of SMBHs in gas-
rich galaxies, which are expected to have steep central stellar
concentrations due to elevated levels of star formation in their nuclei.
This is, in particular, important as the upcoming LISA gravitational
wave observatory will be the most sensitive for SMBHs with masses
in the range of MBH ∼ 106–107 M� (Amaro-Seoane et al. 2007),
which are expected to reside at the centres of gas-rich late-type
galaxies.

AC K N OW L E D G E M E N T S

We would like to thank Seppo Mikkola, the referee of the paper.
The numerical simulations were performed on facilities hosted
by the CSC – IT Center for Science, Finland and the MPCDF,
Germany. AR, PP, MM, and PHJ acknowledge the support by
the European Research Council via ERC Consolidator Grant
KETJU (no. 818930). TN acknowledges support from the Deutsche
Forschungsgemeinschaft (DFG; German Research Foundation) un-
der Germany’s Excellence Strategy – EXC-2094 – 390783311 from
the DFG Cluster of Excellence ‘ORIGINS’.

REFERENCES

Aarseth S. J., 1999, PASP, 111, 1333
Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge Univ.

Press, Cambridge
Aarseth S. J., 2012, MNRAS, 422, 841
Aarseth S. J., Anosova J. P., Orlov V. V., Szebehely V. G., 1994, Celest.

Mech. Dyn. Astron., 58, 1
Alexander T., 2017, ARA&A, 55, 17
Amaro-Seoane P., Gair J. R., Freitag M., Miller M. C., Mandel I., Cutler C.

J., Babak S., 2007, Class. Quantum Gravity, 24, R113
Amdahl G. M., 1967, Proc. April 18-20, 1967, Spring Joint Comput. Conf.

AFIPS ’67 (Spring). ACM, New York, NY, USA, p. 483
Beckmann R. S., Slyz A., Devriendt J., 2018, MNRAS, 478, 995
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307
Berczik P., Merritt D., Spurzem R., Bischof H.-P., 2006, ApJ, 642,

L21
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ.

Press, Princeton, NJ
Borůvka O., 1926, Pr. Moravské přı́rodovědecké společnosti, sv. III, 7, 37

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

http://dx.doi.org/10.1086/316455
http://dx.doi.org/10.1111/j.1365-2966.2012.20666.x
http://dx.doi.org/10.1007/BF00692114
http://dx.doi.org/10.1146/annurev-astro-091916-055306
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1093/mnras/sty931
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1086/504426

4148 A. Rantala et al.

Boylan-Kolchin M., Ma C.-P., 2004, MNRAS, 349, 1117
Bulirsch R., Stoer J., 1966, Numer. Math., 8, 1
Burrau C., 1913, Astron. Nachr., 195, 113
Deuflhard P., 1983, Numer. Math., 41, 399
Dubois Y., Gavazzi R., Peirani S., Silk J., 2013, MNRAS, 433, 3297
Duffell P. C., D’Orazio D., Derdzinski A., Haiman Z., MacFadyen A., Rosen

A. L., Zrake J., 2019, preprint (arXiv:1911.05506)
Ferrarese L., Ford H., 2005, Space Sci. Rev., 116, 523
Gragg W. B., 1965, SIAM J. Numer. Anal., 2, 384
Gualandris A., Read J. I., Dehnen W., Bortolas E., 2017, MNRAS, 464,

2301
Hairer E., Lubich C., Wanner G., 2006, Geometric Numerical Integration:

Structure-Preserving Algorithms for Ordinary Differential Equations,
Vol. 31. Springer-Verlag, Berlin

Hairer E., Nørsett S., Wanner G., 2008, Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer Series in Computational
Mathematics. Springer, Berlin

Harary F., 1969, Graph Theory. Addison-Wesley, Reading
Harfst S., Gualandris A., Merritt D., Mikkola S., 2008, MNRAS, 389, 2
Hayward C. C., Torrey P., Springel V., Hernquist L., Vogelsberger M., 2014,

MNRAS, 442, 1992
Hellström C., Mikkola S., 2010, Celest. Mech. Dyn. Astron., 106, 143
Hernquist L., 1990, ApJ, 356, 359
Holley-Bockelmann K., Richstone D., 1999, ApJ, 517, 92
Ito T., Fukushima T., 1997, AJ, 114, 1260
Jernigan J. G., Porter D. H., 1989, ApJS, 71, 871
Johansson P. H., Naab T., Burkert A., 2009, ApJ, 690, 802
Kahan W., 1965, Commun. ACM, 8, 40
Khan F. M., Just A., Merritt D., 2011, ApJ, 732, 89
Khan F. M., Fiacconi D., Mayer L., Berczik P., Just A., 2016, ApJ, 828, 73
Kim J.-h., Wise J. H., Alvarez M. A., Abel T., 2011, ApJ, 738, 54
Korch M., Rauber T., Scholtes C., 2011, Concurrency Comput.: Pract. Exp.,

23, 1789
Kormendy J., Ho L. C., 2013, ARA&A, 51, 511
Kormendy J., Richstone D., 1995, ARA&A, 33, 581
Kozai Y., 1962, AJ, 67, 591
Kruskal J. B., 1956, Proc. Am. Math. Soc., 7, 48
Kustaanheimo P., Stiefel E., 1965, J. Reine Angew. Math., 218, 204
Lauer T. R. et al., 2007, ApJ, 664, 226
Lidov M. L., 1962, Planet. Space Sci., 9, 719
Mannerkoski M., Johansson P. H., Pihajoki P., Rantala A., Naab T., 2019,

ApJ, 887, 35
Mayer L., Kazantzidis S., Madau P., Colpi M., Quinn T., Wadsley J., 2007,

Science, 316, 1874
Merritt D., 2006, ApJ, 648, 976
Merritt D., 2013, Dynamics and Evolution of Galactic Nuclei. Princeton

Univ. Press, Princeton, NJ
Mikkola S., 1997, Celest. Mech. Dyn. Astron., 67, 145
Mikkola S., Aarseth S. J., 1989, Celest. Mech. Dyn. Astron., 47, 375

Mikkola S., Aarseth S. J., 1993, Celest. Mech. Dyn. Astron., 57, 439
Mikkola S., Aarseth S., 2002, Celest. Mech. Dyn. Astron., 84, 343
Mikkola S., Merritt D., 2006, MNRAS, 372, 219
Mikkola S., Merritt D., 2008, AJ, 135, 2398
Mikkola S., Tanikawa K., 1999a, Celest. Mech. Dyn. Astron., 74, 287
Mikkola S., Tanikawa K., 1999b, MNRAS, 310, 745
Mikkola S., Palmer P., Hashida Y., 2002, Celest. Mech. Dyn. Astron., 82,

391
Milosavljević M., Merritt D., 2001, ApJ, 563, 34
Milosavljević M., Merritt D., 2003, ApJ, 596, 860
Misgeld I., Hilker M., 2011, MNRAS, 414, 3699
Moody M. S. L., Shi J.-M., Stone J. M., 2019, ApJ, 875, 66
Naoz S., 2016, ARA&A, 54, 441
Neumaier A., 1974, Z. Angew. Math. Mech., 54, 39
Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435
Pihajoki P., 2015, Celest. Mech. Dyn. Astron., 121, 211
Press W., Teukolsky S., Vetterling W., Flannery B., 2007, Numerical

Recipes, 3rd edn: The Art of Scientific Computing. Cambridge Univ.
Press, Cambridge

Preto M., Tremaine S., 1999, AJ, 118, 2532
Prim R. C., 1957, Bell Syst. Tech. J., 36, 1389
Quinlan G. D., 1996, New Astron., 1, 35
Rantala A., Pihajoki P., Johansson P. H., Naab T., Lahén N., Sawala T., 2017,

ApJ, 840, 53
Rantala A., Johansson P. H., Naab T., Thomas J., Frigo M., 2018, ApJ, 864,

113
Rantala A., Johansson P. H., Naab T., Thomas J., Frigo M., 2019, ApJ, 872,

L17
Rauber T., Rünger G., 1997, Concurrency, Pract. Exp., 9, 181
Ryu T., Perna R., Haiman Z., Ostriker J. P., Stone N. C., 2018, MNRAS,

473, 3410
Sanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Stumpff K., Weiss E. H., 1968, J. Astronaut. Sci., 15, 257
Szebehely V., Peters C. F., 1967, AJ, 72, 876
Tang Y., MacFadyen A., Haiman Z., 2017, MNRAS, 469, 4258
Valtonen M., Karttunen H., 2006, The Three-Body Problem. Cambridge

Univ. Press, Cambridge, UK
Vasiliev E., Antonini F., Merritt D., 2015, ApJ, 810, 49
Wang X., Wang X., Mitchell Wilkes D., 2009, IEEE Trans. Knowl. Data

Eng., 21, 945
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
Zhong C., Malinen M., Miao D., Fränti P., 2013, in Wilson R., Hancock

E., Bors A., Smith W., eds, Computer Analysis of Images and Patterns.
Springer, Berlin, p. 262

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 492, 4131–4148 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4131/5706852 by N
ational Library of H

ealth Sciences user on 27 O
ctober 2020

http://dx.doi.org/10.1111/j.1365-2966.2004.07585.x
http://dx.doi.org/10.1002/asna.19131950602
http://dx.doi.org/10.1007/BF01418332
http://dx.doi.org/10.1093/mnras/stt997
http://arxiv.org/abs/1911.05506
http://dx.doi.org/10.1007/s11214-005-3947-6
http://dx.doi.org/10.1137/0702030
http://dx.doi.org/10.1093/mnras/stw2528
http://dx.doi.org/10.1111/j.1365-2966.2008.13557.x
http://dx.doi.org/10.1093/mnras/stu957
http://dx.doi.org/10.1007/s10569-009-9248-8
http://dx.doi.org/10.1086/168845
http://dx.doi.org/10.1086/307176
http://dx.doi.org/10.1086/118559
http://dx.doi.org/10.1086/191400
http://dx.doi.org/10.1088/0004-637X/690/1/802
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1088/0004-637X/732/2/89
http://dx.doi.org/10.3847/0004-637X/828/2/73
http://dx.doi.org/10.1088/0004-637X/738/1/54
http://dx.doi.org/10.1002/cpe.1765
http://dx.doi.org/10.1146/annurev-astro-082708-101811
http://dx.doi.org/10.1146/annurev.aa.33.090195.003053
http://dx.doi.org/10.1086/108790
http://dx.doi.org/10.1086/519229
http://dx.doi.org/10.1016/0032-0633(62)90129-0
http://dx.doi.org/10.3847/1538-4357/ab52f9
http://dx.doi.org/10.1126/science.1141858
http://dx.doi.org/10.1086/506139
http://dx.doi.org/10.1023/A:1008217427749
http://dx.doi.org/10.1007/BF00051012
http://dx.doi.org/10.1007/BF00695714
http://dx.doi.org/10.1111/j.1365-2966.2006.10854.x
http://dx.doi.org/10.1088/0004-6256/135/6/2398
http://dx.doi.org/10.1023/A:1008368322547
http://dx.doi.org/10.1046/j.1365-8711.1999.02982.x
http://dx.doi.org/10.1023/A:1015248411856
http://dx.doi.org/10.1086/323830
http://dx.doi.org/10.1086/378086
http://dx.doi.org/10.1111/j.1365-2966.2011.18669.x
http://dx.doi.org/10.3847/1538-4357/ab09ee
http://dx.doi.org/10.1146/annurev-astro-081915-023315
http://dx.doi.org/10.1002/zamm.19740540106
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1007/s10569-014-9597-9
http://dx.doi.org/10.1086/301102
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1016/S1384-1076(96)00003-6
http://dx.doi.org/10.3847/1538-4357/aa6d65
http://dx.doi.org/10.3847/1538-4357/aada47
http://dx.doi.org/10.3847/2041-8213/ab04b1
http://dx.doi.org/10.1002/(SICI)1096-9128(199703)9:3\protect \unhbox \voidb@x \penalty \@M \ \<\protect \unhbox \voidb@x \penalty \@M \ 181::AID-CPE245\protect \unhbox \voidb@x \penalty \@M \ \>\protect \unhbox \voidb@x \penalty \@M \ 3.0.CO;2-6
http://dx.doi.org/10.1093/mnras/stx2524
http://dx.doi.org/10.1146/annurev.astro.34.1.749
http://dx.doi.org/10.1111/j.1365-2966.2005.09238.x
http://dx.doi.org/10.1086/110355
http://dx.doi.org/10.1093/mnras/stx1130
http://dx.doi.org/10.1088/0004-637X/810/1/49
http://dx.doi.org/10.1109/TKDE.2009.37
http://dx.doi.org/10.1093/mnras/183.3.341

