64 research outputs found

    Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments : Evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation

    Get PDF
    The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO2 isomers, unimolecular reactions of nitrate RO2 radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12gh) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Preparation of Simulation Chambers for Experiments

    No full text
    International audienceWhen setting up a simulation chamber experiment it is essential, in order to ensure meaningful results, to start with a well-controlled chemical system. Coming after the chapter dealing with the requested careful characterization of the simulation chamber, the present chapter describes the preparation of the chamber before running an experiment. It includes various chamber cleaning protocols, the preparation of a clean chamber atmosphere (the reacting mixture) and a series of protocols for blank experiments. Indeed, having a clean atmosphere in a simulation chamber, as free as possible from both particulate and gaseous impurities, is essential to ensure high quality experimental results. As it may not be possible to have a perfectly clean chamber, blank experiments are crucial to both assess chamber cleanliness, account for impurities and establish uncertainties of the observed phenomena. In the present chapter, various cleaning protocols which involve the oxidation of the impurities, dilution, temperature degradation/evaporation, but the evacuation or manual cleaning are described as well. The various techniques to generate clean gas mixture—mostly clean O 2 , N 2 or water vapor, are discussed. Finally, complementarily to the reference experiments proposed in Chap. 2 , blank experiments to characterize walls chemical inertia, chamber-dependent radical sources or the presence of water-soluble species are also described

    Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs

    No full text
    The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10−5 ± 3.20 × 10−6 m3 μg−1 for nopinone, 4.86 × 10−4 ± 1.80 × 10−4 m3 μg−1 for apoverbenone, 6.84 × 10−4 ± 1.52 × 10−4 m3 μg−1 for oxonopinone and 2.00 × 10−3 ± 1.13 × 10−3 m3 μg−1 for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10−2 for nopinone, 2.17 × 10−3 for apoverbenone, 3.09 × 10−1 for oxonopinone and 7.74 × 10−1 for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions
    • …
    corecore