588 research outputs found

    Multiple genetic loci for bone mineral density and fractures

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Bone mineral density influences the risk of osteoporosis later in life and is useful in the evaluation of the risk of fracture. We aimed to identify sequence variants associated with bone mineral density and fracture. METHODS: We performed a quantitative trait analysis of data from 5861 Icelandic subjects (the discovery set), testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip and lumbar spine. We then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). RESULTS: Sequence variants in five genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2x10(-7) to 2.0x10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappaB ligand gene (RANKL) (chromosomal location, 13q14), the osteoprotegerin gene (OPG) (8q24), and the estrogen receptor 1 gene (ESR1) (6q25). The two other regions are close to the zinc finger and BTB domain containing 40 gene (ZBTB40) (1p36) and the major histocompatibility complex region (6p21). The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappaB gene (RANK), and loci at 2p16 and 11p11. CONCLUSIONS: We have discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in three populations of European descent. Although these variants alone are not clinically useful in the prediction of risk to the individual person, they provide insight into the biochemical pathways underlying osteoporosis

    Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAIMS: Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland. METHODS AND RESULTS: Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: β = 11.1 mg/dL, P = 8.0 × 10-7; p.V111M: β = 8.3 mg/dL, P = 1.1 × 10-6; p.V32M: β = 10.2 mg/dL, P = 8.1 × 10-4). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67-1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: β = 1.25 mg/dL, P = 1.7 × 10-18), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD. CONCLUSION: Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.deCODE genetics/Amge

    Meta-analysis of erosive hand osteoarthritis identifies four common variants that associate with relatively large effect

    Get PDF
    [Abstract] Objectives: Erosive hand osteoarthritis (EHOA) is a severe subset of hand osteoarthritis (OA). It is unclear if EHOA is genetically different from other forms of OA. Sequence variants at ten loci have been associated with hand OA but none with EHOA. Methods: We performed meta-analysis of EHOA in 1484 cases and 550 680 controls, from 5 populations. To identify causal genes, we performed eQTL and plasma pQTL analyses, and developed one zebrafish mutant. We analysed associations of variants with other traits and estimated shared genetics between EHOA and other traits. Results: Four common sequence variants associated with EHOA, all with relatively high effect. Rs17013495 (SPP1/MEPE, OR=1.40, p=8.4×10-14) and rs11243284 (6p24.3, OR=1.35, p=4.2×10-11) have not been associated with OA, whereas rs11631127 (ALDH1A2, OR=1.46, p=7.1×10-18), and rs1800801 (MGP, OR=1.37, p=3.6×10-13) have previously been associated with hand OA. The association of rs1800801 (MGP) was consistent with a recessive mode of inheritance in contrast to its additive association with hand OA (OR homozygotes vs non-carriers=2.01, 95% CI 1.71 to 2.37). All four variants associated nominally with finger OA, although with substantially lower effect. We found shared genetic components between EHOA and other OA measures, grip strength, urate levels and gout, but not rheumatoid arthritis. We identified ALDH1A2, MGP and BMP6 as causal genes for EHOA, with loss-of-function Bmp6 zebrafish mutants displaying EHOA-like phenotypes. Conclusions: We report on significant genetic associations with EHOA. The results support the view of EHOA as a form of severe hand OA and partly separate it from OA in larger joints

    Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome.

    Get PDF
    Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet there is little consensus regarding its aetiology. Here we perform a genome-wide association study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759 controls, with follow-up in a further ∼2,000 clinically validated cases and ∼100,000 controls. We identify six signals for PCOS at genome-wide statistical significance (P<5 × 10(-8)), in/near genes ERBB4/HER4, YAP1, THADA, FSHB, RAD50 and KRR1. Variants in/near three of the four epidermal growth factor receptor genes (ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian randomization analyses indicate causal roles in PCOS aetiology for higher BMI (P=2.5 × 10(-9)), higher insulin resistance (P=6 × 10(-4)) and lower serum sex hormone binding globulin concentrations (P=5 × 10(-4)). Furthermore, genetic susceptibility to later menopause is associated with higher PCOS risk (P=1.6 × 10(-8)) and PCOS-susceptibility alleles are associated with higher serum anti-Müllerian hormone concentrations in girls (P=8.9 × 10(-5)). This large-scale study implicates an aetiological role of the epidermal growth factor receptors, infers causal mechanisms relevant to clinical management and prevention, and suggests balancing selection mechanisms involved in PCOS risk.This work was supported by the Medical Research Council [U106179472; MC_U106179472; U106179471; MC_U106179471] and the National Human Genome Research Institute of the National Institutes of Health (grant number R44HG006981 to 23andMe). The UK Medical Research Council and Wellcome Trust (092731), together with the University of Bristol, provide core support for the ALSPAC study. AMH assays in ALSPAC were funded with a grant from the US National Institute of Health (R01 DK077659). DAL works in a unit that receives funding from the University of Bristol and the UK Medical Research Council (MC_UU_12013/5).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms946

    Selection against variants in the genome associated with educational attainment

    Get PDF
    Epidemiological and genetic association studies show that genetics play an important role in the attainment of education. Here, we investigate the effect of this genetic component on the reproductive history of 109,120 Icelanders and the consequent impact on the gene pool over time. We show that an educational attainment polygenic score, POLYEDU, constructed from results of a recent study is associated with delayed reproduction (P < 10-100) and fewer children overall. The effect is stronger for women and remains highly significant after adjusting for educational attainment. Based on 129,808 Icelanders born between 1910 and 1990, we find that the average POLYEDU has been declining at a rate of ∼0.010 standard units per decade, which is substantial on an evolutionary timescale. Most importantly, because POLYEDU only captures a fraction of the overall underlying genetic component the latter could be declining at a rate that is two to three times faster

    Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesEpileptic encephalopathies are a group of childhood epilepsies that display high phenotypic and genetic heterogeneity. The recent, extensive use of next-generation sequencing has identified a large number of genes in epileptic encephalopathies, including UBA5 in which biallelic mutations were first described as pathogenic in 2016 (Colin E et al., Am J Hum Genet 99(3):695-703, 2016. Muona M et al., Am J Hum Genet 99(3):683-694, 2016). UBA5 encodes an activating enzyme for a post-translational modification mechanism known as ufmylation, and is the first gene from the ufmylation pathway that is linked to disease.We sequenced the genomes of two sisters with early-onset epileptic encephalopathy along with their unaffected parents in an attempt to find a genetic cause for their condition. The sisters, born in 2004 and 2006, presented with infantile spasms at six months of age, which later progressed to recurrent, treatment-resistant seizures. We detected a compound heterozygous genotype in UBA5 in the sisters, a genotype not seen elsewhere in an Icelandic reference set of 30,067 individuals nor in public databases. One of the mutations, c.684G > A, is a paternally inherited exonic splicing mutation, occuring at the last nucleotide of exon 7 of UBA5. The mutation is predicted to disrupt the splice site, resulting in loss-of-function of one allele of UBA5. The second mutation is a maternally inherited missense mutation, p.Ala371Thr, previously reported as pathogenic when in compound heterozygosity with a loss-of-function mutation in UBA5 and is believed to produce a hypomorphic allele. Supportive of this, we have identified three adult Icelanders homozygous for the p.Ala371Thr mutation who show no signs of neurological disease.We describe compound heterozygous mutations in the UBA5 gene in two sisters with early-onset epileptic encephalopathy. To our knowledge, this is the first description of mutations in UBA5 since the initial discovery that pathogenic biallelic variants in the gene cause early-onset epileptic encephalopathy. We further provide confirmatory evidence that p.Ala371Thr is a hypomorphic mutation, by presenting three adult homozygotes who show no signs of neurological disease

    Allele frequency of variants reported to cause adenine phosphoribosyltransferase deficiency.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAdenine phosphoribosyltransferase deficiency is a rare, autosomal recessive disorder of purine metabolism that causes nephrolithiasis and progressive chronic kidney disease. The small number of reported cases indicates an extremely low prevalence, although it has been suggested that missed diagnoses may play a role. We assessed the prevalence of APRT deficiency based on the frequency of causally-related APRT sequence variants in a diverse set of large genomic databases. A thorough search was carried out for all APRT variants that have been confirmed as pathogenic under recessive mode of inheritance, and the frequency of the identified variants examined in six population genomic databases: the deCODE genetics database, the UK Biobank, the 100,000 Genomes Project, the Genome Aggregation Database, the Human Genetic Variation Database and the Korean Variant Archive. The estimated frequency of homozygous genotypes was calculated using the Hardy-Weinberg equation. Sixty-two pathogenic APRT variants were identified, including six novel variants. Most common were the missense variants c.407T>C (p.(Met136Thr)) in Japan and c.194A>T (p.(Asp65Val)) in Iceland, as well as the splice-site variant c.400 + 2dup (p.(Ala108Glufs*3)) in the European population. Twenty-nine variants were detected in at least one of the six genomic databases. The highest cumulative minor allele frequency (cMAF) of pathogenic variants outside of Japan and Iceland was observed in the Irish population (0.2%), though no APRT deficiency cases have been reported in Ireland. The large number of cases in Japan and Iceland is consistent with a founder effect in these populations. There is no evidence for widespread underdiagnosis based on the current analysis.Rare Kidney Stone Consortium, a part of the National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network (RDCRN) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Center for Advancing Translational Sciences (NCATS) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK) Landspitali University Hospital Research Fun

    Sequence variant at 4q25 near PITX2 associates with appendicitis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAppendicitis is one of the most common conditions requiring acute surgery and can pose a threat to the lives of affected individuals. We performed a genome-wide association study of appendicitis in 7,276 Icelandic and 1,139 Dutch cases and large groups of controls. In a combined analysis of the Icelandic and Dutch data, we detected a single signal represented by an intergenic variant rs2129979 [G] close to the gene PITX2 associating with increased risk of appendicitis (OR = 1.15, P = 1.8 × 10(-11)). We only observe the association in patients diagnosed in adulthood. The marker is close to, but distinct from, a set of markers reported to associate with atrial fibrillation, which have been linked to PITX2. PITX2 has been implicated in determination of right-left symmetry during development. Anomalies in organ arrangement have been linked to increased prevalence of gastrointestinal and intra-abdominal complications, which may explain the effect of rs2129979 on appendicitis risk

    Collaborative Meta-analysis: Associations of 150 Candidate Genes With Osteoporosis and Osteoporotic Fracture

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies. OBJECTIVE: To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes. DESIGN: Large-scale meta-analysis of genome-wide association data. SETTING: 5 international, multicenter, population-based studies. PARTICIPANTS: Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands. MEASUREMENTS: Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures. RESULTS: 150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TNFSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST. Limitation: Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded. CONCLUSION: In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD

    A sequence variant associating with educational attainment also affects childhood cognition

    Get PDF
    Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P=4.3 x 10(-4), beta=0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P=8.3 x 10(-5), beta=0.12 s.d., combined P=2.2 x 10(-7), beta=0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P=1.0 x 10(-5))
    corecore