## Handling editor Josef S Smolen <br> - Additional supplemental material is published online only. To view, please visit the journal online (http://dx. doi.org/10.1136/ard-2022223468). <br> For numbered affiliations see end of article. <br> Correspondence to <br> Dr Unnur Styrkarsdottir, Population Genomics, deCODE genetics / Amgen Inc, Reykjavik, Iceland; <br> unnur.styrkarsdottir@decode.is and Kari Stefansson, deCODE genetics, Reykjavik, Iceland; kstefans@decode.is <br> Received 11 October 2022 <br> Accepted 25 February 2023

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Styrkarsdottir U, Stefansdottir L, Thorleifsson G, et al. Ann Rheum Dis Epub ahead of print: [please include Day Month Year]. doi:10.1136/ ard-2022-223468

# Meta-analysis of erosive hand osteoarthritis identifies four common variants that associate with relatively large effect 

Unnur Styrkarsdottir ©, ${ }^{1}$ Lilja Stefansdottir, ${ }^{2}$ Gudmar Thorleifsson, ${ }^{2}$ Olafur A Stefansson, ${ }^{1}$ Saedis Saevarsdottir © , ${ }^{1,3}$ Sigrun H Lund, ${ }^{2}$ Thorunn Rafnar, ${ }^{1}$ Kazuyuki Hoshijima, ${ }^{4}$ Kendra Novak, ${ }^{5}$ Natividad Oreiro, ${ }^{6}$ Ignacio Rego-Perez © ${ }^{6}{ }^{6}$ Channing Hansen, ${ }^{7}$ Nikolas Kazmers, ${ }^{5}$ Lambertus A Kiemeney, ${ }^{8}$ Francisco J Blanco © , ${ }^{6,9}$ Tyler Barker, ${ }^{5,10,11}$ Margreet Kloppenburg © , , ${ }^{12}$ Michael J Jurynec © , , ${ }^{4}$ Daniel F Gudbjartsson, ${ }^{2,13}$ Helgi Jonsson, ${ }^{3,14}$ Unnur Thorsteinsdottir, ${ }^{1,3}$ Kari Stefansson ${ }^{3,15}$


#### Abstract

Objectives Erosive hand osteoarthritis (EHOA) is a severe subset of hand osteoarthritis (OA). It is unclear if EHOA is genetically different from other forms of OA. Sequence variants at ten loci have been associated with hand OA but none with EHOA. Methods We performed meta-analysis of EHOA in 1484 cases and 550680 controls, from 5 populations. To identify causal genes, we performed eQTL and plasma pQTL analyses, and developed one zebrafish mutant. We analysed associations of variants with other traits and estimated shared genetics between EHOA and other traits. Results Four common sequence variants associated with EHOA, all with relatively high effect. Rs 17013495 (SPP1/MEPE, OR=1.40, $\mathrm{p}=8.4 \times 10^{-14}$ ) and rs 11243284 ( $6 p 24.3, O R=1.35, p=4.2 \times 10^{-11}$ ) have not been associated with OA, whereas rs11631127 (ALDH1A2, $O R=1.46, p=7.1 \times 10^{-18}$ ), and rs1800801 (MGP, $O R=1.37, \mathrm{p}=3.6 \times 10^{-13}$ ) have previously been associated with hand OA. The association of rs1800801 (MGP) was consistent with a recessive mode of inheritance in contrast to its additive association with hand OA (OR homozygotes vs non-carriers=2.01, 95\% CI 1.71 to 2.37). All four variants associated nominally with finger OA, although with substantially lower effect. We found shared genetic components between EHOA and other OA measures, grip strength, urate levels and gout, but not rheumatoid arthritis. We identified ALDH1A2, MGP and BMP6 as causal genes for EHOA, with loss-offunction Bmp6 zebrafish mutants displaying EHOA-like phenotypes. Conclusions We report on significant genetic associations with EHOA. The results support the view of EHOA as a form of severe hand OA and partly separate it from OA in larger joints.


## INTRODUCTION

Erosive hand osteoarthritis (EHOA) is a severe form of hand osteoarthritis (OA), one of the most prevalent forms of OA. ${ }^{1-3}$ The clinical burden of EHOA is higher than for other types of hand OA (nodal hand OA or OA in the thumb base). It is characterised

## WHAT IS ALREADY KNOWN ON THIS TOPIC

No genetic associations have been reported for erosive hand osteoarthritis (EHOA).

## WHAT THIS STUDY ADDS

This study finds the first genetic association with EHOA at four loci that all confer relatively high risk of the disease, identifies candidate causal genes at three loci: ALDH1A2, MGP and BMP6, and strong candidates at one locus: SPP1, IBSP and MEPE.

## HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

This study highlights EHOA as somewhat separate from osteoarthritis in the larger joints and points to potential drug targets for the disease.
by abrupt onset with inflammation, radiographic features of central erosions and collapse of the subchondral bone, and rapid progression. Markers of inflammation and bone resorption are higher in EHOA patients than in other forms of hand OA. This can make it challenging to differentiate clinically from erosive rheumatoid arthritis (RA) and erosive gout in the small joints of the hand, two disease entities that have specific effective therapies on the market, while no disease-modifying drugs are yet available for EHOA. Between 5\% and 20\% of patients with symptomatic hand OA have EHOA which, as other OA types, predominantly affects females (reviewed in ref 3 ). ${ }^{3}$

Although EHOA is phenotypically different from nodal hand OA in the distal and proximal interphalangeal joints, it is not clear if EHOA represents a genetically distinct form of hand OA. Several studies have identified a genetic or familial component to $\mathrm{EHOA}^{45}$ and a few candidate genes and loci, such as HLA alleles and the IL1B gene, have been suggested. ${ }^{6-8}$

There is, however, no genome-wide association study (GWAS) of EHOA that has been reported, but ten loci have been described for hand/finger/thumb

OA. ${ }^{9-12}$ The first and only meta-analysis of hand OA, which included 20901 individuals with hand OA from 9 populations, ${ }^{12}$ found associations at the previously reported ALDH1A2, ${ }^{9}$ $M G P^{10} 11$ and WNT9A ${ }^{11}$ loci, as well as at seven additional loci. None of the earlier studies separated EHOA from finger or hand OA, that is, EHOA patients were included in these analyses.

Here, based on five independent EHOA study populations, we identified four genetic loci that associate with EHOA. Two of these loci were previously associated with hand OA overall, at ALDH1A2 and MGP. We also discovered two new loci with candidate causal genes involved in bone biology, BMP6 and SPP1/MEPE/IBSP. Our data indicate that EHOA has substantial genetic overlap with finger OA, yet displays risk alleles that are associated with susceptibility of EHOA over that of finger or hand OA and of OA in other joints.

## METHODS

Details on the study populations and the methods used are given in online supplemental material to this publication.

## Study populations

Iceland: EHOA (918 cases) was diagnosed from conventional dorsopalmar radiographs taken of individuals with provisional diagnosis of hand OA and compared with 109249 controls. The proximal and distal interphalangeal joints were scored according to Verbruggen-Veys (VV) ${ }^{13}$ and patients with at least one joint in the E phase (erosive) or R phase (remodelled) were classified as having EHOA. Individuals diagnosed with RA were excluded.

The Netherlands: The EHOA cases $(\mathrm{N}=145)$ were derived from the Hand OSTeoArthritis in Secondary care study, ${ }^{14}$ and the controls $(\mathrm{N}=5102)$ from the Nijmegen Biomedical Study. ${ }^{15}$ EHOA cases were classified according to $\mathrm{VV},{ }^{13}$ excluding RA.

UK: The UK Biobank resource (http://www.ukbiobank.ac. uk) includes data from 500000 volunteers who were recruited between the age of 40 and 69 years in 2006-2010 across the United Kingdom. EHOA included those with the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD10) code M15.4, excluding RA (63 EHOA cases/430 875 controls).

USA: The EHOA cases $(\mathrm{N}=145)$ included those with ICD-10 code M15.4, excluding RA, in the Utah Population Database ${ }^{16}$ and the Intermountain Healthcare HerediGene: Population Study (Utah, USA), compared with 5308 controls.

Spain: The EHOA cases $(\mathrm{N}=218)$ were derived from the PROspective COhort of A Coruña cohort,,${ }^{517}$ and the controls $(\mathrm{N}=164)$ were from other projects at A Coruña University Hospital who had not been diagnosed with hand OA on radiographs. EHOA cases were scored according to VV. ${ }^{13}$

All participants in this study were genetically determined to be of European descent.

## Genotyping and association analysis

All the samples, except UK Biobank, were genotyped at deCODE genetics, using various Illumina chips, while UK Biobank genotyping used a custom-made Affimetrix chip. Imputation of all datasets was performed at deCODE genetics. Association analysis was done using logistic regression, adjusting for age, sex and principal components.

## EHOA meta-analysis

We meta-analysed GWAS summary results from the additive model using a fixed-effects inverse variance method, ${ }^{18}$ including variants with info $>0.8$ and present in at least two datasets
( $\mathrm{N}=46$ million). For GWS thresholds we used the weighted Holm-Bonferroni method to allocate familywise error rate of 0.05 equally between five annotation-based classes of sequence variants. ${ }^{19}$ For the EHOA associated variants we also tested the recessive model, and the full genotype model.

Polygenic Risk Score and phenotype correlation analysis
We used Polygenic Risk Score (PRS) analysis based on a EHOA meta-analysis of Icelandic, Dutch, Spanish and US GWASs to investigate its correlation with about 5000 quantitative and case/ control traits in the UK Biobank dataset. The PRSs was calculated using genotypes for about 600000 autosomal markers included on the Illumina SNP chips to avoid uncertainty due to imputation quality. ${ }^{20}$

## Genetic correlations

Using cross-trait linkage disequilibrium (LD) score regression method, ${ }^{21}$ we estimated the genetic correlation between EHOA and other OA subtypes in the Genetics of Osteoarthritis (GO) consortium dataset, ${ }^{12}$ and with other traits identified as correlated with EHOA in the PRS analysis in data from UK biobank, or associated with the EHOA variants, and RA (see online supplemental material for description of these phenotypes). In this analysis, we used results for about 1.2 million well-imputed variants, and for LD information, we used precomputed LD scores for European populations (downloaded from: https://data.broadinstitute.org/ alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2.

## Phenoscan of public datasets

Associations of EHOA variants with other phenotypes was assessed using the Open Targets Genetics website (https:// genetics.opentargets.org/), and a diverse set of phenotypes in UK Biobank that were generated at deCODE genetics. Associations with the lead EHOA variants, and variants in LD with the EHOA variants ( $\mathrm{r}^{2}>0.8$ ), and $\mathrm{p}<1 \times 10^{-6}$ were evaluated.

Functional annotation of sequence variants and enrichment of association signals
We determined if the lead sequence variant or correlated variants ( $\mathrm{r}^{2}>0.80$ ) were located within candidate cis-regulatory elements (cCRE) ${ }^{22}$ or tissue-specific regulatory regions ${ }^{23}$ and looked for association signals in enhancer elements defined in EpiMap. We also determined their location within tissue-specific regulatory regions. ${ }^{23}$

Co-localisation of GWA signals with expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) signals
We analysed co-localisation of the EHOA associations with variation in gene transcription (eQTL) or variations in protein levels in plasma (plasma pQTL). ${ }^{24}$ For the eQTLs analysis, we used data from the publicly available Genotype-Tissue Expression (GTEx) project (https://www.gtexportal.org/), and deCODE genetics RNA sequence data from whole blood of 13175 Icelanders and subcutaneous adipose tissue from 700 Icelanders. ${ }^{25}$ For plasma pQTL analysis, we used the dataset described in Ferkingstad et $a l,{ }^{26}$ which tested association of 27.2 million variants with levels of 4719 proteins (adjusted and standardised levels) in plasma samples from 35559 Icelanders.

## Plasma protein levels

The dataset used for analysis of plasma protein levels is the same as for the plasma proteomics, restricted to those EHOA patients who had their sample taken within a year ( $\pm 1$ year)

Table 1 Characteristics of the study subjects

|  |  | N (\% female) | Age, mean ( $\pm$ SD) | BMI, mean <br> $( \pm$ SD $)$ |
| :--- | :--- | :--- | :--- | :--- |
| Iceland | EHOA | $918(79)$ | $75.0(11.2)$ | $27.3(4.9)$ |
|  | Controls | $109249(46)$ | $66.5(14.0)$ | $26.8(5.3)$ |
| UK Biobank | EHOA | $63(79)$ | $61.3(6.6)$ | $28.6(6.4)$ |
|  | Controls | $430875(54)$ | $57.4(8.0)$ | $27.4(4.8)$ |
| USA | EHOA | $145(82)$ | $68.9(12.1)$ | $27.5(6.1)$ |
|  | Controls | $5308(60)$ | $56.3(18.2)$ | $29.6(6.9)$ |
| Spain | EHOA | $218(84)$ | $61.1(8.7)$ | $28.1(5.3)$ |
|  | Controls | $164(32)$ | $58.9(12.6)$ | $27.5(4.6)$ |
| The Netherlands | EHOA | $139(82)$ | $64.3(8.4)$ | $27.5(4.7)$ |
|  | Controls | 5102 (53) | $54.9(18.2)$ | $25.2(4.0)$ |
| BMI, body mass index; EHOA, erosive hand osteoarthritis. |  |  |  |  |

from the radiograph that was used to diagnose EHOA. Association between protein levels and EHOA was tested with logistic regression ( R V.3.6.3), adjusting for age, sex and body mass index. Results are represented as OR of having EHOA per SD increase in standardised plasma protein levels.

## Zebrafish experiments

The zebrafish (Danio rerio) Tu strain was used in all experiments. The generation of F0 and germline zebrafish lacking bmp6 gene function is described in detail in online supplemental material and shown schematically in online supplemental figure S1. Cartilage and bone staining was performed on 14 days post fertilisation (dpf) larvae.

## Patient and public involvement statement

This research was done without direct patient involvement.

## RESULTS

## GWAS and meta-analysis

To search for sequence variants that contribute to EHOA, we performed GWAS in samples from Iceland, The Netherlands, Spain, UK and USA (table 1), and subsequently meta-analysed the results from 1484 subjects with EHOA and 550680 controls.

We found four independent associations which satisfied our GWS criteria (table 2, online supplemental table S1, figure 1 and online supplemental material): rs17013495 (4q22.1, between SPP1 and MEPE), rs11243284 (6p24.3), rs1800801 in 5’UTR of MGP (12p12.3) and rs11631127 (15q21.3, in ALDH1A2).

The associations at MGP and ALDH1A2 have previously been reported for hand OA, ${ }^{9-11}$ whereas rs17013495 (SPP1/MEPE) and rs11243284 (6p24.3) have not, nor with any other forms of OA. Rs11243284 at 6p24.3 is not correlated with the recently identified association of rs12190551 with spine OA $\left(r^{2}=0.002\right) .{ }^{27}$


Figure 1 Manhattan plot of the genome-wide analysis of erosive hand osteoarthritis The $p$ values $(-\log 10)$ are plotted against their respective positions on each chromosome. Results are shown for all variants with significance level $p<0.001$ and imputation information greater than 0.8 .

Rs1800801 in the $5^{\prime}$ UTR in MGP associated stronger with EHOA under a recessive model (OR=1.85 (95\% CI 1.59 to 2.14), $\mathrm{p}=3.7 \times 10^{-16}$ ), than under an additive/multiplicative model ( $\mathrm{OR}=1.37(1.26,1.49), \mathrm{p}=3.6 \times 10^{-13}$ ) (online supplemental table S2). In the full genotype model, which assesses risk of heterozygous and homozygous genotypes compared with the homozygous wild-type, the OR for the heterozygotes (TC) was smaller than expected for the additive model, $\mathrm{OR}_{\text {het }}=1.15$ (1.00, 1.32), $\mathrm{p}=0.047$, while the OR for the homozygotes (TT) was larger, $\mathrm{OR}_{\text {hom }}=2.01(1.71,2.37), \mathrm{p}=1.1 \times 10^{-16}$. The full model fits significantly better than the additive model for rs1800801 ( $p=0.0011$ ) (online supplemental table S2), demonstrating the recessive nature of this association. As opposed to the association of rs1800801 with EHOA, the association of rs1800801 with hand, finger and thumb OA was consistent with the additive model rather than the recessive model (online supplemental table S3).

For the other three EHOA-associated variants, we did not observe deviation from the additive/multiplicative model for the genotype risk (online supplemental table S2).

## Functional annotation of the EHOA-associated variants

We annotated the EHOA variants according to location in ENCODE's encyclopaedia of cCRE, ${ }^{22}$ their tissue specificity, ${ }^{23}$ co-localisation with mRNA expression (eQTL) in various tissues and co-localisation with protein expression (pQTL) in plasma. We specifically note that bone, cartilage or other joint tissues are not available for eQTL/pQTL analysis in any public dataset.

Table 2 Genome wide significant associations with erosive hand osteoarthritis

| Variant | Chr:position | EA/NEA | Freq\% | Closest gene | VA | P value |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| rs17013495 | $4: 87885460$ | T/C | 59.6 | SPP1/MEPE | Intergenic | $8.40 \mathrm{E}-14$ |
| rs11243284 | $6: 8945086$ | C/T | 28.9 |  | Intergenic | $4.20 \mathrm{E}-11$ |
| rs1800801 | $12: 14885854$ | T/C | 37.2 | MGP | 5'UTR | 1.40 (1.28, 1.53) |
| rs11631127 | $15: 57977811$ | C/G | 57.6 | ALDH1A2 | Intron | 1.48) |

Results are shown from the meta-analysis of the Icelandic, Dutch, Spanish, UK and US sets. Results for individual sample sets are shown in online supplemental table S1. Chr is chromosome, Pos is the position in build GRCh38, EA designate the effect allele (EA) and NEA the other allele (non effect allele). Freq. is the allelic frequency of the effect allele. Gene refers to the nearest gene and VA is variant annotation. 5'UTR is the 5 prime untranslated region. $P$ values are two sided and derived from a likelihood ratio test.

## Osteoarthritis

The EHOA-associated variants (the lead variant or highly correlated variants, $\mathrm{r}^{2}>0.8$ ) at all four loci reside in enhancerlike sequences (online supplemental table S4), and the variants at MGP and ALDH1A2 also overlap with promoter-like sequences, suggesting a regulatory role of these variants in expression of nearby genes. The 12p12.3 (MGP), 15q21.3 (ALDH1A2) and 4 q 22.1 (SPP1/MEPE) signals are in cCREs found in many different tissues, whereas the 6 p 24.3 signal is restricted to few tissue types (online supplemental table S5), possibly suggesting tissue specific activity. Consistent with this observation we found co-localisation of the EHOA variants and/or mRNA expression or protein levels in plasma, at three of the loci: SPP1 at 4q22.1, MGP at 12 p 12.3 and $A L D H 1 A 2$ at 15 q 21.3 (online supplemental table S6 and S7). MGP and ALDH1A2 are also predicted target genes in the EpiMap resource ${ }^{28}$ (online supplemental table S8). Furthermore, all of the four EHOA loci are within tissuespecific regulatory regions for vascular/endothelial cells which we estimate is 2.8 -fold higher than expected by chance alone (expected overlap $=35 \% ; 95 \% \mathrm{CI} 0 \%$ to $75 \%$ ), but, as we tested for enrichment within 16 different tissue-specific groups, ${ }^{23}$ the enrichment was only nominally significant ( $p=0.011$, online supplemental table S9).

The EHOA risk allele of rs11631127 co-localised with reduced expression of $A L D H 1 A 2$ in cultured fibroblasts (online supplemental table S6), consistent with previous results in cartilage and other joint tissues, ${ }^{929}$ and rs1800801[T] in MGP co-localised with both reduced MGP eQTL (online supplemental table S6) in several tissues and with reduced matrix Gla protein (encoded by the MGP gene) pQTL in plasma (online supplemental table S7), also consistent with previous results. ${ }^{10122830}$ Since the MGP gene is expressed at a very low level in blood cells the protein in plasma primarily comes from other tissues. Furthermore, in our data, an increased plasma level of matrix Gla protein associated with lower odds of EHOA (OR $=0.75$ per $\mathrm{SD}, \mathrm{p}=0.028, \mathrm{~N}_{\text {erosive }}=55, \mathrm{~N}_{\text {controls }}=27083$, online supplemental figure S2).

Rs17013495[T] at the 4 q 22.1 locus co-localised with reduced mRNA expression of the SPP1 gene in spleen (online supplemental table S6), and associated with decreased level of osteopontin (encoded by the SPP1 gene) in plasma (online supplemental table S7), although not the strongest cis-pQTL for this protein in plasma. Increased levels of bone sialoprotein 2, encoded by the IBSP gene at the 4q22.1 locus, associated with reduced odds of EOHA ( $\mathrm{OR}=0.74$ per $\mathrm{SD}, \mathrm{p}=0.023$, online supplemental figure S2), although pQTL or eQTL for this gene did not co-localise with the EHOA variants. However, we note that expression of the IBSP gene is mostly restricted to bone and cartilage, tissues without public eQTL/pQTL datasets.

We did not detect eQTLs or pQTLs at the 6p24.3 locus. However, of the nine genes within 1.5 MB of rs11243284, BMP6 is the most likely candidate gene because of the known role of the BMP signalling pathway in skeletal formation and homeostasis. ${ }^{31-33}$ To uncover biological functions of BMP6 in vivo, we examined the consequences of complete loss of bmp6 function in the zebrafish. We used CRISPR-Cas9 methods to generate F0 and germline deletions of $b m p 6$ (online supplemental figure S1). WT and $b m p 6^{+/-}$have a normally segmented vertebral column indicating that Bmp6 does not affect the overall development or patterning of the larval skeleton (figure 2 and online supplemental figure S3). In contrast to WT or control larvae, $b m p 6^{+/-}$have multiple defects reminiscent of EHOA, including bone erosions, structural defects in the vertebral precursors and ectopic cartilage formation. These data support that BMP6 is a strong candidate gene in EHOA.


Figure 2 Loss of bmp6 causes erosive-like phenotypes in the zebrafish vertebral precursors. (A-C'). Analysis of cartilage (blue) and bone (red) in the vertebral column of 14 days post fertilisation wild-type (WT) and $b m p 6^{+\curvearrowright}$ zebrafish larvae. ( $\mathrm{A}, \mathrm{A}^{\prime}$ ) WT larvae have a normally segmented and ossified centra (vertebral precursors) and neural (na) and hemal arches (ha), whereas ( $\mathrm{B}, \mathrm{C}^{\prime}$ ) $b m p 6^{+/-}$have multiple defects, including bone erosions (arrow in B and $\mathrm{B}^{\prime}$ ), structural defects in the centra (arrowhead in $B, C$ and $C^{\prime}$ ), ectopic cartilage formation (arrow in $\mathrm{C}^{\prime}$ ), and disruptions in the neural and hemal arches (asterisks in $\mathrm{C}^{\prime}$ ). No defects are observed in the cartilaginous structures of the fins. All images are lateral views with anterior to the left.

All the above genes (ALDH1A2, MGP, BMP6, SPP1 and IBSP) are expressed in human cartilage, ${ }^{34}$ with relative expression from the $0.01^{\text {st }}$ percentile (MGP) to the 12th percentile (BMP6).

## Association of EHOA variants with other OA subtypes and relevant diseases or traits

To address association of the four EHOA variants with other OA subtypes and other diseases or traits, we used data from the GO consortium ${ }^{12}$ and public datasets (Open Targets Genetics and UK Biobank data). Furthermore, we generated EHOA PRS to run a non-hypothesis driven scan for genetic overlap with other diseases/traits in UK Biobank, and subsequently, assessed the genetic component shared by EHOA and other traits with LD score regression.

All four EHOA variants associated with finger OA in the GO consortium data ( $P_{\text {Bonferroni }}<0.0025$ ) but with considerably lower OR estimate than for EHOA (table 3). All EHOA variants, except rs11243284 at 6 p 24.3 , also associated nominally with thumb OA. Of special note is the opposite effect of rs1800801 (MGP) and rs11631127 (ALDH1A2) on knee OA compared with EHOA, that is, the EHOA risk alleles associated with reduced risk of knee OA, consistent with what was also observed in the GO consortium meta-analysis. ${ }^{12}$ None of the EHOA variants associated with spine OA.

Three of the EHOA signals, rs17013495 (SPP1), rs1800801 (MGP) and rs11631127 (ALDH1A2), showed some multitrait associations, although mostly with musculoskeletal measures; hand grip strength and bone density (online supplemental table

Table 3 Association of the four EHOA variants with other osteoarthritis in the GO consortium meta-analysis

|  |  | $\begin{aligned} & \text { Finger } \mathrm{OA}(\mathrm{~N}=10804 \\ & \text { cases } / 255814 \\ & \text { controls) } \end{aligned}$ |  | Thumb OA ( $\mathrm{N}=10536$ cases/236919 controls) |  | Hip OA (N=36 520 <br> cases/317590 <br> controls) |  | Knee OA ( $\mathrm{N}=63498$ cases/335777 controls) |  | Spine OA ( $\mathrm{N}=28731$ cases/307 798 controls) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variant (allele) | Chr:position | OR | $P$ value |
| rs17013495(T) | chr4:87885460 | 1.08 | 2.3E-05* | 1.05 | 7.9E-03* | 0.99 | 0.16 | 1.00 | 0.58 | 1.01 | 0.32 |
| rs11243284(C) | chr6:8945086 | 1.10 | 1.3E-06* | 1.00 | 0.85 | 1.00 | 0.84 | 1.00 | 0.59 | 0.99 | 0.25 |
| rs1800801(T) | chr12:14885854 | 1.16 | 8.6E-16* | 1.06 | 2.5E-04* | 0.97 | 5.5E-03 | 0.98 | 2.3E-03* | 1.01 | 0.27 |
| rs11631127(C) | chr15:57977811 | 1.09 | 3.7E-07* | 1.10 | 1.3E-08* | 1.02 | 0.079 | 0.97 | 1.3E-06* | 1.00 | 0.64 |

Results are shown for OA subsets phenotypes in the Genetics of Osteoarthritis Consortium meta-analysis. ${ }^{12}$ Chr is chromosome, Pos is the position in build GRCh38.
*Denotes significant associations after correction for multiple testing.
EHOA, erosive hand osteoarthritis; GO, genetics of osteoarthritis; OA, osteoarthritis.

S10). No disease or trait, except for OA, was shared by two or more of the EHOA loci. Of note is association of rs17013495[C] with increased levels of urate and risk of gout, another form of arthritis caused by uric acid crystal deposition, but severe gout can also result in bone erosions. Follow-up of these observations for all four EHOA variants in UK Biobank data and in our meta-analysis of bone density shows an association of all four EHOA risk alleles with reduced grip strength (online supplemental figure S4), but only rs17013495 (SPP1/MEPE) associated with urate (online supplemental table S11). All four EHOA variants also associated nominally with lumbar spine bone mineral density (LS-BMD), but the direction of effects was not consistent between the four variants. Only rs1800801 (MGP) associated with BMD estimated with heel ultrasound (eBMD).

Consistent with the above-described observations, the EHOA PRS scan was only significant ( $\mathrm{p}<1.0 \times 10^{-5}$, accounting for 5000 main phenotypes) for hand OA measures, other arthrosis diagnosis (ICD10:M19), polyarthrosis (ICD10:M15), pain due to OA and hand grip strength (online supplemental table S12).

We estimated the extent of shared genetics between EHOA and the other OA subtypes and the traits identified in the phenoscans through genetic correlation analysis. Although, not identified in the multitrait associations analysis nor in the PRS scan, we also included RA in this analysis because that it is another form of inflammatory arthritis that can result in bone erosions and is, as gout, a clinical differential diagnosis to EHOA.

We observed highest genetic correlation between EHOA and those types of OA of which EHOA is a subset, that is, finger OA and hand OA, followed by thumb OA, knee OA, hip OA and the weakest with spine OA (figure 3). Reduced grip strength, increased urate levels and gout were also nominally correlated genetically with EHOA, whereas measures of bone density and RA were not.

The extent of genetic correlation between EHOA and other OA types is also reflected by the associations of GO consortium variants with EHOA ${ }^{12}$ (online supplemental table S13). Eight of the 10 GO independent associations with hand, finger or thumb OA, associated with EHOA under a false discovery rate of $5 \%$ in our data, whereas only 3 of the remaining 68 independent knee, hip, spine or any OA variants did so. The small sample size of our EHOA dataset may not be powered to detect associations with these variants, however, similar results were also observed for direct comparison of the ORs of EHOA and the other OA subsets, irrespective of the significance of the association (online supplemental figure S5). We note that as for the EHOA variants reported here, a majority of the finger/hand OA variants associated with EHOA with larger ORs than with finger/hand OA in the GO data, indicating that EHOA is a severe subset of finger OA.

## DISCUSSION

Here, we describe the first GWAS of EHOA. Despite a modest sample size of 1484 cases, we found 4 significant EHOA loci, all of which confer relatively high effect on EHOA risk.

Two of the associated loci, rs1800801 (MGP) and rs11631127 (ALDH1A2), have previously been associated with hand OA overall. ${ }^{1012}$ Both of these loci also associated with knee OA with opposite effects to that of EHOA, that is, the EHOA risk alleles associate with protection of knee OA. ${ }^{12}$ The EHOA risk alleles at these loci co-localise with lower mRNA expression of ALDH1A2 and MGP in cartilage, other joint tissues as well as some other tissues, ${ }^{9} 1012293035$ and the rs1800801 (MGP) risk allele also co-localises with lower levels of matrix Gla protein levels in plasma, indicating that ALDH1A2 and MGP genes are likely EHOA candidate causal genes at these loci. ${ }^{9} 1012293035$ We also show that the matrix Gla protein in plasma is lower in EHOA patients than in controls, further supporting a causal role


Figure 3 Genetic correlation between EHOA and other OA subtypes and diseases/traits The genetic correlation coefficient $\left(r_{g}\right)$ and SE, of genetic correlation between EHOA and other OA subtypes, any OA (which includes all types of OA), and several diseases/traits are shown. HGS is hand grip strength, FN_BMD is femoral neck bone mineral density, LS_BMD is lumbar spine bone mineral density, and RA is rheumatoid arthritis. BMD, bone mineral density; EHOA, erosive hand osteoarthritis; LS-BMD, lumbar spine BMD; OA, osteoarthritis.
of the MGP gene in OA, with lower level of protein predisposing to the disease. rs1800801 (MGP) associated with EHOA under a recessive model, whereas the association with finger OA is consistent with an additive model. The matrix Gla protein is a vitamin K dependent inhibitor of ectopic tissue calcification, particularly of vascular and cartilage calcification. ${ }^{3637}$ The function of the protein depends on the post-translational $\mathrm{Ca}^{++}$binding $\gamma$-carboxyglutamic acid residues (Gla), mediated by vitamin K , but fully carboxylated form of matrix Gla protein has been shown to be lower in OA cartilage than in normal cartilage. ${ }^{38}$

We found two association signals for EHOA that have not been associated with OA before, rs17013495 (SPP1/MEPE) and rs11243284 (BMP6). Both variants associated nominally with finger OA in our data, although with lower effect. The SPP1/MEPE locus is a well-known locus for BMD ${ }^{39-41}$ and the EHOA risk variant also associated with increased LS-BMD in our data. We also observed association with increased levels of urate and risk of gout.

There are strong candidate genes at the SPP1/MEPE locus, that harbours a cluster of five genes that encode the SIBLNG (small integrin-binding ligand N -linked glycoprotein) family of extracellular matrix proteins, three of which are expressed in the relevant tissues of bone and/or cartilage: IBSP (bone sialoprotein 2), MEPE (matrix extracellular phosphoglycoprotein) and SPP1 (osteopontin). SPP1 is expressed in many tissues and cell types whereas expression of IBSP and MEPE is mostly restricted to bone, cartilage and teeth. ${ }^{42-44}$ We found co-localisation of rs17013495 EHOA risk variant and lower expression of SPP1 in spleen, and association with a secondary pQTL for plasma levels of osteopontin. We also observed lower levels of bone sialoprotein 2 in plasma of EHOA patients. The origin of this protein in plasma is most likely from bone as it constitutes approximately $12 \%$ of the non-collagenous proteins in human bone and is not expressed in other tissues than bone and/or cartilage. However, since no dataset is currently available to conduct well-powered eQTL or pQTL studies in joint tissues, the possible causal effect of these genes on EHOA cannot be differentiated at this stage. They all play key biological roles in the mineralisation of bone, form an integral part of the mineralised matrix and are involved in chondrocyte differentiation, bone formation and remodelling. ${ }^{45}$

The similarities in the bone phenotypes that we observed in the zebrafish $b m p 6$ mutants we created with the clinical hallmarks of EHOA suggests that BMP6, that has a role in maintaining bone and joint homeostasis, is the candidate causative gene at the 6p24.3 locus. Although several studies have examined the function of BMP6 on bone formation, its precise role remains unclear possibly due to functional redundancy of other BMPs or genetic compensation. ${ }^{3246-48}$ Recently, a GWAS found that an intronic variant in BMP6, rs12190551[C], uncorrelated with the EHOA signal, associated with spine OA. The spine OA risk allele correlated with reduced expression of BMP6 mRNA in the tibial nerve in the GTEx portal. ${ }^{27}$ Previous transcriptomic analysis of musculoskeletal tissue from bmp mutants has demonstrated that loss of bmp6 activated the NF-кB pathway, which inhibited development of osteoblasts and promoted osteoclast formation. ${ }^{46}$ Further, gain-of-function and loss-of-function studies in animal models are needed to delineate the precise role and mechanism of BMP6 function in OA. ${ }^{49}$

Our phenoscan of over 5000 different diseases and traits in UK Biobank using the EHOA PRS, as well as genetic correlation analysis using LD score regression, indicated that EHOA unsurprisingly shares genetics with different measures of OA, but also with decreased hand grip strength, increased urate concentrations
and gout, but not RA. The genetic correlation with other OA subtypes shows, as expected, the most shared genetics between EHOA and finger and hand OA, of which EHOA is a subset. EHOA, gout and RA share the clinical features of joint inflammation, and erosions in the most severe cases of gout and RA. It should also be noted that it can be difficult to differentiate between EHOA and gout, both clinically and radiographically. In contrast to EHOA, there are several effective disease-modifying antirheumatic therapies available for RA that hinder progression to erosive disease, but those have not proven effective against EHOA, also indicating a different underlying pathogenesis.

Here, we describe the first robust loci for EHOA. All four loci conferred relatively high risk of the disease, with one locus, rs1800801 in MGP, associating with EHOA under recessive mode of inheritance with $\mathrm{OR}=2.0$, compared with additive association with finger OA, thus differentiating EHOA from finger OA. All four risk variants associated with lowered hand grip strength. Two of the EHOA variants, rs17013495 (SPP1/MEPE) and rs11243284 (BMP6), only associated with EHOA and/or hand OA, and no other type of OA. Of special note is the opposite effect of rs1800801 in MGP and rs11631127 in ALDH1A2 on knee OA compared with EHOA, that is, the EHOA risk allele of these variants confer protection of knee OA. The likely EHOA candidate genes at these loci implicate roles of cartilage calcification (MGP), vitamin A (ALDH1A2) and bone/cartilage mineralisation/remodelling (BMP6, SPP1/IBSP/MEPE) pathways in EHOA. Moreover, our results support the notion that EHOA is a severe form of hand OA as evident by higher risk of the EHOA and reported hand OA variants in EHOA than of fingers/ thumbs OA, as well as high genetic correlation. Our results also indicate some genetic, and or functional or biological, distinction between EHOA and OA in the larger joints, since the EHOA risk alleles either do not confer risk, or confer protection, of OA in these joints, and the lower genetic correlation.

## Author affiliations

${ }^{1}$ Population Genomics, deCODE genetics / Amgen Inc, Reykjavik, Iceland
${ }^{2}$ Statistics, deCODE genetics / Amgen Inc, Reykjavik, Iceland
${ }^{3}$ Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
${ }^{4}$ Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
${ }^{5}$ Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
${ }^{6}$ Rheumatology Division, A Coruna University Hospital, A Coruna, Spain
${ }^{7}$ Enterprise Analytics, Intermountain Healthcare, Salt Lake City, Utah, USA
${ }^{8}$ Radboud University Medical Center, Radboud Institute for Health Science, Radboud University, Nijmegen, The Netherlands
${ }^{9}$ Department of Phisiotherapy, Medicine and Biomedical Sciences, A Coruna University Hospital, A Coruna, Spain
${ }^{10}$ Precision Genomics, Intermountain Healthcare, Salt Lake City, Utah, USA
${ }^{11}$ Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
${ }^{12}$ Department of Rheumatology, Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
${ }^{13}$ School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
${ }_{15}^{14}$ Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland ${ }^{15}$ deCODE genetics / Amgen Inc, Reykjavik, Capital, Iceland

## Twitter Ignacio Rego-Perez @nacho_rego

Acknowledgements We thank the study subjects for their valuable participation. This research has been conducted using the UK Biobank Recourse under application numbers 23359 and 56270.
Contributors US, UT, GT, SS, HJ, SS, MJJ and KS designed the study and interpreted the results. DGF, LS, GT, SHL and US coordinated or performed statistical and bioinformatics analyses. OAS performed analyses of regulatory regions. MJJ, NK and KH coordinated, analysed or carried out zebrafish experiments. HJ, US, TR, SS, LAK, MK, TB, CH, FJB, NO, IR-P, MJJ, NK and KN carried out subject recruitment, ascertainment or managed phenotype data. US, UT, GT, SS and MJJ drafted the manuscript. MK, TB and FJB drafted the manuscript for intellectual content. All authors contributed to the final version of the manuscript. US and KS are responsible for the overall content as guarantors.

Funding The study is sponsored by deCODE genetics/Amgen. The Hostas study is financially supported by the Dutch Arthritis Society, who did not have influence on the design, performance and analysis of the study.
Competing interests The authors US, LS, GT, OAS, SS, SHL, DFG, UT and KS are affiliated with deCODE genetics/Amgen and declare competing interests as employees. The author MK reports consultancy/lecture fees outside the submitted work from Pfizer, Novartis, UCB, Galapagos, Flexion, Kiniksa, Jansen, Abbvie, CHDR, all paid to institution. Royalties from Wolters Kluwer and Springer Verlag, paid to institution.
Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.
Patient consent for publication Not applicable.
Ethics approval This study involves human participants. All Icelandic participants who donated samples gave informed consent and the National Bioethics Committee of Iceland approved the study (VSN_14-148, VSN_14-015 v8), which was conducted in agreement with conditions issued by the Data Protection Authority of Iceland. The Dutch subjects gave written informed consent and the study was approved by the Leiden University Medical Center medical ethical committee (CCMO reference NL26201.058.08) and the Institutional Review Board of the Radboud University Medical CenterCentre. All UK participants gave informed consent and UK Biobank's scientific protocol and operational procedures were reviewed and approved by the North West Research Ethics Committee. US subjects were informed of the study protocol and procedures prior to providing consent and the study was approved by the Institutional Review Board at the University of Utah (IRB\#: 79442) and Intermountain Healthcare (IRB\#: 1051071). PROCOAC samples belong to the Sample Collection for Research on Rheumatic Diseases authorised by the Galician Research Ethics Committee (CAEIG) with registry code 2013/107 and inscribed in the National Registry of Biobanks - Collections Section (Code C.0000424). The patients have signed an informed consent agreement form prior to collection
Provenance and peer review Not commissioned; externally peer reviewed.
Data availability statement The summary results from the EHOA meta-analysis are available at https://www.decode.com/summarydata. Other data are available on reasonable request.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.
Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

## ORCID iDs

Unnur Styrkarsdottir http://orcid.org/0000-0001-8146-8278
Saedis Saevarsdottir http://orcid.org/0000-0001-9392-6184
Ignacio Rego-Perez http://orcid.org/0000-0003-1754-1164
Francisco J Blanco http://orcid.org/0000-0001-9821-7635
Margreet Kloppenburg http://orcid.org/0000-0002-9294-2307
Michael J Jurynec http://orcid.org/0000-0003-2702-9164

## REFERENCES

1 Kloppenburg M, Kwok W-Y. Hand osteoarthritis -- a heterogeneous disorder. Nat Rev Rheumatol 2011;8:22-31.
2 Marshall M, Watt FE, Vincent TL, et al. Hand osteoarthritis: clinical phenotypes, molecular mechanisms and disease management. Nat Rev Rheumatol 2018;14:641-56.
3 Favero M, Belluzzi E, Ortolan A, et al. Erosive hand osteoarthritis: latest findings and outlook. Nat Rev Rheumatol 2022;18:171-83.
4 Bijsterbosch J, van Bemmel JM, Watt I, et al. Systemic and local factors are involved in the evolution of erosions in hand osteoarthritis. Ann Rheum Dis 2011;70:326-30.
5 Oreiro-Villar N, Raga AC, Rego-Pérez I. PROCOAC (prospective cohort of A coruñA) description: spanish prospective cohort to study osteoarthritis. Reumatol Clin (Engl Ed) 2020;18:100-4.
6 Pattrick M, Manhire A, Ward AM, et al. Hla-A, B antigens and alpha 1-antitrypsin phenotypes in nodal generalised osteoarthritis and erosive osteoarthritis. Ann Rheum Dis 1989;48:470-5.

7 Ramonda R, Musacchio E, Campana C, et al. Immunogenetic aspects of erosive osteoarthritis of the hand in patients from northern Italy. Scand $J$ Rheumatol 2011;40:139-44.
8 Stern AG, de Carvalho MRC, Buck GA, et al. Association of erosive hand osteoarthritis with a single nucleotide polymorphism on the gene encoding interleukin-1 beta. Osteoarthritis Cartilage 2003;11:394-402.
9 Styrkarsdottir U, Thorleifsson G, Helgadottir HT, et al. Severe osteoarthritis of the hand associates with common variants within the aldh1a2 gene and with rare variants at 1p31. Nat Genet 2014;46:498-502.
10 den Hollander W, Boer CG, Hart DJ, et al. Genome-Wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann Rheum Dis 2017;76:2046-53.
11 Boer CG, Yau MS, Rice SJ, et al. Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify wnt9a as novel osteoarthritis gene. Ann Rheum Dis 2021;80:367-75.
12 Boer CG, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021;184:6003-5.
13 Verbruggen G, Veys EM. Numerical scoring systems for the anatomic evolution of osteoarthritis of the finger joints. Arthritis Rheum 1996;39:308-20.
14 Damman W, Liu R, Kroon FPB, et al. Do comorbidities play a role in hand osteoarthritis disease burden? data from the hand osteoarthritis in secondary care cohort. J Rheumatol 2017;44:1659-66.
15 Wetzels JFM, Kiemeney LALM, Swinkels DW, et al. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen biomedical study. Kidney Int 2007;72:632-7.
16 Kazmers NH, Meeks HD, Novak KA, et al. Familial clustering of erosive hand osteoarthritis in a large statewide cohort. Arthritis Rheumatol 2021;73:440-7.
17 Oreiro-Villar N, Raga AC, Rego-Pérez I, et al. PROCOAC (prospective cohort of a coruñA) description: Spanish prospective cohort to study osteoarthritis. Reumatol Clin (Engl Ed) 2020:S1699-258X(20)30231-X.
18 MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat/ Cancer Inst 1959;22:719-48.
19 Sveinbjornsson G, Albrechtsen A, Zink F, et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet 2016;48:314-7.
20 Kong A, Frigge ML, Thorleifsson G, et al. Selection against variants in the genome associated with educational attainment. Proc Natl Acad Sci U SA 2017;114:E727-32.
21 Bulik-Sullivan BK, Loh P-R, Finucane HK, et al. Ld score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 2015;47:291-5.
22 ENCODE Project Consortium, Moore JE, Purcaro MJ, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020;583:699-710.
23 Meuleman W, Muratov A, Rynes E, et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature 2020;584:244-51.
24 Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014;10:e1004383.
25 Styrkarsdottir U, Lund SH, Thorleifsson G, et al. Meta-Analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 2018;50:1681-7.
26 Ferkingstad E, Sulem P, Atlason BA, et al. Large-Scale integration of the plasma proteome with genetics and disease. Nat Genet 2021;53:1712-21.
27 Zhang Y , Grant RA, Shivakumar MK, et al. Genome-Wide association analysis across 16,956 patients identifies a novel genetic association between BMP6, NIPAL1, CNGA1 and spondylosis. Spine (Phila Pa 1976) 2021;46:E625-31.
28 Boix CA, James BT, Park YP, et al. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 2021;590:300-7.
29 Shepherd C, Zhu D, Skelton AJ, et al. Functional characterization of the osteoarthritis genetic risk residing at aldh1a2 identifies rs12915901 as a key target variant. Arthritis Rheumatol 2018;70:1577-87.
30 Shepherd C, Reese AE, Reynard LN, et al. Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP. Arthritis Res Ther 2019;21:149.
31 Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 2003;24:218-35.
32 Gitelman SE, Kobrin MS, Ye JQ, et al. Recombinant vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol 1994;126:1595-609.
33 Wu M, Chen G, Li YP. Tgf-B and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:16009.
34 Ramos YFM, den Hollander W, Bovée JVMG, et al. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the raak study. PLOS ONE 2014;9:e103056.
35 Houtman E, Coutinho de Almeida R, Tuerlings M, et al. Characterization of dynamic changes in matrix gla protein (MGP) gene expression as function of genetic risk alleles, osteoarthritis relevant stimuli, and the vitamin K inhibitor warfarin. Osteoarthritis Cartilage 2021;29:1193-202.

## Osteoarthritis

36 Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med 2013;19:217-26.
37 Newman B, Gigout LI, Sudre L, et al. Coordinated expression of matrix Gla protein is required during endochondral ossification for chondrocyte survival. J Cell Biol 2001;154:659-66.
38 Wallin R, Schurgers LJ, Loeser RF. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: a fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthritis Cartilage 2010;18:1096-103.
39 Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-Wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 2012;44:491-501.
40 Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 2018;102:88-102.
41 Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 2019;51:258-66.
42 Petersen DN, Tkalcevic GT, Mansolf AL, et al. Identification of osteoblast/ osteocyte factor 45 (OF45), a bone-specific CDNA encoding an RGD-containing
protein that is highly expressed in osteoblasts and osteocytes. I Biol Chem 2000;275:36172-80.
43 Fisher LW, Fedarko NS. Six genes expressed in bones and teeth encode the current members of the sibling family of proteins. Connect Tissue Res 2003;44 Suppl 1:33-40.
44 Gullard A, Gluhak-Heinrich J, Papagerakis S, et al. MEPE localization in the craniofacial complex and function in tooth dentin formation. J Histochem Cytochem 2016;64:224-36.
45 Malaval L, Aubin JE, Vico L. Role of the small integrin-binding ligand N-linked glycoprotein (sibling), bone sialoprotein (BSP) in bone development and remodeling. Osteoporos Int 2009;20:1077-80.
46 Xu H , Tong G, Yan T, et al. Transcriptomic analysis provides insights to reveal the bmp6 function related to the development of intermuscular bones in zebrafish. Front Cell Dev Biol 2022;10:821471.
47 Beederman M, Lamplot JD, Nan G, et al. Bmp signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng 2013;6:32-52.
48 Solloway MJ, Dudley AT, Bikoff EK, et al. Mice lacking BMP6 function. Dev Genet 1998;22:321-39.
49 Jurynec MJ, Gavile CM, Honeggar M, et al. The NOD/RIPK2 signaling pathway contributes to osteoarthritis susceptibility. Genetics [Preprint] 2022.

## Supplementary Table 1. Association of EHOA GWS variants in the individual study populations



## Supplementary Table 2. Association of EHOA variants with EHOA under additive, recessive and full genotype models

| Variant[allele] | Chr |  |  |  |  |  |  | Genotype specific model |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Additive model |  |  | Recessive model |  |  | Heterozygotes |  |  | Homozygotes |  |  | P model |
|  |  | OR (95\% CI) | $P$ value | $\mathbf{P}_{\text {het }}$ | OR (95\% CI) | $P$ value | $\mathbf{P}_{\text {het }}$ | OR (95\% CI) | $P$ value | $\mathbf{P}_{\text {het }}$ | OR (95\% CI) | $P$ value | $\mathrm{P}_{\text {het }}$ |  |
| rs17013495[T] | chr4 | 1.395 (1.279-1.522) | 8.77E-14 | 0.17 | 1.600 (1.346-1.901) | 9.64E-08 | 0.16 | 1.342 (1.098-1.641) | 0.0041 | 0.48 | 2.011 (1.630-2.481) | 7.07E-11 | 0.63 | 0.289 |
| rs11243284[C] | chr6 | 1.354 (1.237-1.482) | 4.22E-11 | 0.67 | 1.674 (1.387-2.022) | 8.47E-08 | 0.41 | 1.307 (1.147-1.491) | 6.27E-05 | 0.77 | 1.773 (1.457-2.157) | 1.07E-08 | 0.66 | 0.446 |
| rs1800801[T] | chr12 | 1.368 (1.257-1.488) | 3.55E-13 | 0.17 | 1.848 (1.594-2.143) | 3.86E-16 | 0.14 | 1.151 (1.002-1.323) | 0.047 | 0.87 | 2.012 (1.705-2.373) | $1.09 \mathrm{E}-16$ | 0.34 | 0.0011 |
| rs11631127[C] | chr15 | 1.456 (1.337-1.587) | 7.15E-18 | 0.59 | 1.608 (1.376-1.880) | 2.68E-09 | 0.45 | 1.320 (1.095-1.591) | 0.0036 | 0.42 | 2.089 (1.726-2.528) | $3.69 \mathrm{E}-14$ | 0.48 | 0.241 |

Association of the four EHOA variants with EHOA is shown for the additive model, the recessive model, and for the full model evaluating risk at the heterozygous genotypes and homozygous genotypes. The effect allele of each variant is shown within square brackets, with the odds ratio (OR) with $95 \%$ confidence interval (CI), the $P$ value, and the heterogeneity $P$ value ( $\mathrm{P}_{\text {het }}$ ) for each model, and the $P$ value ( $P$ model) for deviation from the additive model.

## Supplementary Table 3. Association of rs1800801 in 5'UTR of MGP with hand osteoarthritis subtypes under additive, recessive and full genotype model

| Phenotype | N cases / N controls | Additive model |  |  | Recessive model |  |  | Genotype specific model |  |  |  |  |  | P model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Heterozygotes | Homozygotes |  |  |  |
|  |  | OR (95\% CI) | P value | Phet |  |  |  | OR (95\% CI) | P value | Phet | OR (95\% Cl) | P value | Phet |  | OR (95\% Cl) | P value | Phet |
| Erosive hand OA | 1,484/550,680 | 1.368 (1.257-1.488) | 3.6E-13 | 0.17 | 1.848 (1.594-2.143) | 3.9E-16 | 0.14 | 1.151 (1.002-1.323) | 0.047 | 0.87 | 2.012 (1.705-2.373) | 1.1E-16 | 0.34 | 0.0011 |
| Finger OA | 7,871/608,869 | 1.143 (1.099-1.188) | 1.5E-11 | 0.026 | 1.258 (1.173-1.349) | 1.12-10 | 0.035 | 1.103 (1.037-1.173) | 0.0017 | 0.60 | 1.349 (1.242-1.464) | 1.0E-12 | 0.031 | 0.12 |
| Thumb OA | 9,865 / 623,814 | 1.066 (1.031-1.103) | 1.6E-04 | 0.28 | 1.064 (0.999-1.133) | 0.055 | 0.22 | 1.108 (1.052-1.166) | 1.0E-04 | 0.44 | 1.129 (1.050-1.214) | 0.0010 | 0.19 | 0.056 |
| Hand OA | 14,841/626,618 | 1.080 (1.050-1.111) | 8.4E-08 | 0.081 | 1.132 (1.074-1.193) | 3.31E-06 | 0.059 | 1.073 (1.027-1.120) | 0.0016 | 0.34 | 1.181 (1.112-1.254) | 6.8E-08 | 0.08 | 0.19 | as genotypes. The odds ratio (OR) with 95\% confidence interval (Cl), included in the erosive hand OA analysis.

Supplementary Table 4. EHOA variants, or their correlated variants, are located in regions defined as candidate cis-regulatory elements by ENCODE project (screen.encodeproject.org).

|  |  | GWAS association, | quence variant for |  |
| :---: | :---: | :---: | :---: | :---: |
| cCRE annotation: | $\begin{gathered} \text { rs17013495 } \\ \text { (chr4:87885460) } \\ \text { LD class }=68 \end{gathered}$ | $\begin{gathered} \text { rs11243284 } \\ \text { (chr6:8945086) } \\ \text { LD class }=17 \end{gathered}$ | $\begin{gathered} \text { rs1800801 } \\ \text { (chr12:14885854) } \\ \text { LD class }=107 \end{gathered}$ | $\begin{gathered} \text { rs11631127 } \\ \text { (chr15:57977811) } \\ \text { LD class }=155 \end{gathered}$ |
| DNase-H3K4me3 |  |  |  | chr15:58008570:SG |
| Promoter-like sequence (PLS) |  |  |  | chr15:58065219:IG |
| Promoter-like sequence (PLS)-CTCF-bound |  |  | chr12:14885854:SG |  |
|  |  |  | chr12:14834162:SG, chr12:14834298:SG, |  |
|  |  |  | chr12:14836364:SG, |  |
|  |  |  | chr12:14851053:SG, |  |
|  | chr4:87868563:SG, | chr6:8948008:SG, | chr12:14851097:IG, chr12:14899824:SG, | chr15:58040343:SG, |
| Enhancer-like sequence, distal (dELS) | chr4:87868643:SG | chr6:8948226:SG | chr12:14899901:SG, | chr15:58040385:SG |
|  |  |  | chr12:14900018:SG, |  |
|  |  |  | chr12:14910656:SG, |  |
|  |  |  | chr12:14911149:IG, |  |
|  |  |  | chr12:14911328:SG, |  |
|  |  |  | chr12:14911429:SG |  |
|  |  |  | chr12:14847029:SG, |  |
| Enhancer-like sequence, distal (dELS)-CTCF-bound | chr4:87863666:SG, | chr6:8949691:SG | chr12:14847226:SG, | chr15:57923529:SG |
|  | chr4:87885460:SG | chr6:8949691:SG | chr12:14854918:IG, chr12:14901082:SG | chr15:57923529:SG |
|  |  |  | chr12:14839301:SG, |  |
| Enhancer-like sequence, proximal (pELS) |  |  | chr12:14840674:SG, | chr15:58063976:IG, |
|  |  |  | chr12:14840920:SG, | chr15:58064657:SG |
|  |  |  | chr12:14883768:SG |  |
| Enhancer-like sequence, proximal (pELS)-CTCF bound |  |  |  | chr15:58064164:SG |

The variants are shown by their position in Build38, with SG ending for SNPs and IG for indels



| renal cortex interstitium | UBERON_005270 |  | chr12:14847029:SG, chr12:14847226:5G, chr12:14854918:16, Chr12:148837768:SG, chr12:14885854:SG | chr15:57923529:SG, chr 15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, chr15:58065219:IG |
| :---: | :---: | :---: | :---: | :---: |
|  | C__000254 |  | chr12:14836364:SG, chr12:14847029:SG, chr12:14847226:SG chr12:14854918:IG |  |
|  |  |  | chr12:14847029:5G, cri12: 14847226:5G, chr12: 14854918:/G, | chr15:57923529:SG, chr15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, |
| renal pelvis | UBERoN_0001224 |  | chr12:14883768:56 |  |
| retina | UBERON_000966 |  |  | chr15:58064164:SG, chr15:58064657:SG, chr15:58065219:IG |
|  | CL_0002586UBERON_0006631 |  | chr12:148836364:SG, chr12:14847029:SG, chr12:14847226:SG, |  |
| retinal pigmente epithelial cellrightatrium auricular region |  |  | chr12:14885854.56 |  |
|  |  |  | chr12:14885854:S6 |  |
|  |  |  | chr12:14836364:SG, chr12:14839301:SG, chr12:14840674:SG, | chr15:59923529:5G, chrr15:58063976:16, chr15:58064164:SG, chris:5806467:SG, |
| right cardiac atrium | UBERoN_0002078 |  | chr12:14901082:56 | chr15:58065219:16 |
| right forelimb right hindlimb | UEERRN 8300001 |  | chr12:14883768:5G, chr12:11885854:56 | chr15:58065219:16 |
|  |  |  | chr12:14883768:5G, chr12:14885854:56 | r15:57923529:5G, chr15:588065219:16 |
|  |  |  | chr12:14847029:SG, chr12:14847226:SG, chr12:14854918:IG, chr12:14883768:SG, chr12:14885854:SG | chr15:57923529:SG, chr15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, |
| right kidneyright lobe of fiver | UBERRN_OO4539 |  |  | chr15:58065219:16 chr15:5923529:S |
|  |  |  | chr12:14847029:SG, chr12:14847226:5G, chr12:14883768:SG, | chr15:57923529:SG, chr15:58063976:IG, |
| right lung | UBERON_0002167 |  | chr12:14885854:SG |  |
|  |  |  | chr12:14854918:19, chr12: 14883768:SG | chr15:57923529:SG, chr15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, |
| right renal cortex interstitium | UBERON_0018118 |  |  | chr15:58065219:IG chr15:57923529:SG, chr15:58063976:IG, |
|  |  |  | chr12:14854918:19, chr12:14883768:56 | chr15:58064164:5G, chr15:58064657:SG, chr15:58065219:16 |
| sciatic nerve | UBERON_OOO1322 |  | chr12:14885854:56 |  |
| sigmoid colon | UBERON_OOO159 |  | chr12:14883768:56, chri2 :148885854:56 | chr15:57923529:56, chr15:58065219:16 |
| skeletal muscle myoblast |  |  | chr12: 14834162:SG, chr12:14834298:SG, chr12:14836364:SG, | chr15:57923529:56 |
| skeletal muscle of trunk | UBERoN 0001774 |  | chr12:14847029:SG, chr12:118477226:5G, chri2:14854918:1G, chr12:14883768:56, chr12:14888854:56 | chr15:57923329:5G, chr 15:58064657:SG, |
|  | UBERON_0001134 |  | chr12:14883768:56, chr12:14885854:5G, crr12:14901082:56 | chr15:57923529:5G, crr15:580664577:56, |
| skeletal muscle tisue |  |  | chr12:14851053:SG, chr12:14851097:IG, chr12:14854918:IG, chr12:14883768:SG, chr12:14885854:SG, chr12:14901082:SG, | chr15:58065219:16 |
| skin epidermis | UBERoN_0001003 |  | chr12:14910655:56 |  |
| skin of body | UBERoN_0002097 |  | 847029:SG, chr12:14847226:56, chr12:14854918:1G, chr12:14883768:SG | chr15:57923529:56, chr15:58063976:16 |
| small intestine |  | chra:87888563:56, chr $4: 87868643: 56$ | chr12:14836364:SG, chr12:14883768:SG, chr12:14885854:SG, chr12:14911149:IG, chr12:14911328:SG, chr12:14911429:SG | chr15:58040343:SG, chr15:58040385:SG, chr15:58064657:SG, chr15:58065219:16 |
|  | UBERON_002108 |  | chr12: 118831162:SG, chr12:14834298:SG, crr12:148363364:SG, |  |
|  |  |  | Chr12:14854918:IG, chr12:14883768:SG, chr12:14885854:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG, | chr15:588664657:56, chr15:58065219:16 |
| smooth muscle cell | ç_O000192CL_O02590 |  | chr12:14911429:SG |  |
| smooth muscle cell of the brain vasculature |  |  | chr12:14836364:S6 | chr15:57923529:56 |
| spinal cord | UBERON_000240 |  | chr12:14834162:SG, chr12:14834298:SG, chr12:14847029:SG, chr12:14847226:SG, chr 12:14883768:SG, chr12:14885854:SG | chr15:57923529:5G, chr15:58064164:SG, chr15:58064657:SG, chr15:58065219:IG |
|  |  |  | chr12: 118831162:SG, chr12:14834298:SG, chr12:14836364:5G, |  |
| spleen | UBERON_002106 |  | chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG, chr12:14847226:SG | 15:57923529:SG, chr15:58064657:SG, chr15:58065219:IG |
|  |  | chr4:87885460:SG | chr12:14836364:SG, chr12:14840674:SG, chr 12:14840920:SG, | chr15:57923529:SG, chr15:58040343:SG, chr15:58040385:SG, chr15:58064164:SG, chr15:58064657:SG, chr15:58065219:16 |
| stomach | UBERON_000945 |  |  |  |
| stomach smooth muscle | UBERON_O004222 |  | chr12:14883768:56, chr12:14888854:5G | chr15:58065219:16 |
| stromal cell of bone marro | CL_0010001 |  | chr12:14836364:SG, crri2:148549118:IG, chr12:148858544:56 |  |
| subcutaneous abdominal adipose tissue | UBERoN_014455 |  | chr12:14885854:SG, chr12:14901082:5G | chr15:57923529:56, chr15:580664677:S6, chr15:58065219:16 |
| substantia nigra | UBERoN_002038 |  | chr12:14885854:56 |  |
| superior temporal gyrus | UBERON_002769 |  | chr12:14883768:S6 |  |
| suppressor macrophage | CL_000862 |  | chr12:148363644:56 | chr15:58065219:16 |
|  |  |  |  | chr15:57923529:5G, chr15:58064657:SG, |
| suprapubic skin | UBERoN_0036199 |  | Chr12:14901082:56, chr12:19910656:56 |  |
| testis | UBERON_0000473 |  | chr12:14847029:SG, chr 12:14847226:SG, chr12:14883768:SG, | chr15:57923529:5G, chr15:58066657:SG, chr15:58065219:16 |
| T-helper 1 cell | CL_0000545 |  | chr12:149110656:56 |  |
| T-helper 17 cell | c__000899 |  |  | chr15:58065219:16 |
| T-helper 2 cell | c__0000546 |  | chr12:14910656:56 |  |
|  | UBERON_0001515 UBERON_0002370 |  | chr12:14840674:SG, cri12:14840920:56, chr12:14847029:SG, | chr15:57923529:56, chr15:58065219:16 |
| thymus |  |  |  | chr15:580664657:56, chr15:58065219:16 |
|  |  |  | chr12:14847029:56, cri12:14877226:56, crr12:18851053:SG, | chr15:57923529:56 |
| thyroid gland tibial artery | UBERON_0002046UBERON_0007610 |  | chr12:14885854:S6 |  |
|  |  |  | chr12:14836364:SG, chr12:1:188837688:56, chr12:14888854:5G, | chr15:57923529:56 |
| tongue | UBERON_0001723 |  | chr12:14883768:56, chr12: 148885854:56 | chr15:57923529:56, chr15:580646577:SG, |
|  |  |  | chr12:14888854:5G, crr12: 149111199:1G, chr12:14911328:56, | chr15:58065219:16 |
| transerse colon | UBERON_0001157 |  | chr12:19911429:56 |  |
|  |  |  | chr12:14836364:SG, chr12:14840674:SG, chr12:14840920:SG, |  |
| trophoblast | UBERON_0000088 |  | chr12:14911149:G6, chr12:14911328:SG, chr12:14911429:56 |  |
| trophoblast cell | CL_000351 | chr $4: 87888853$ :56, chr4:87888643:56, | chr12:14836364:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:5G, chr 12: 14851097:16 |  |
|  |  |  | chr12: 148341122:SG, chr12:148842998:SG, chr12:148363644:SG, |  |
|  |  |  | chr12: 14883768:SG, chr12:14885854:SG, chr12:14899882:SG, | chr15:57923529:56 |
| upper lobe of left lung ureter | UBERON_0008952 UBERON_0000056 |  | chri2:14899901:5G, chri2:19900018:56 | chr15:58065219:16 |
|  |  |  | chr12:14885854:56 | Chris.s80529.16 |
| urinary bladderUuterusvagina | UBERON_0001255 | chr4:87885460:56 | chr12:14847029:SG, chr12:14847226:SG, chr12:14883768:SG, chr12:14885854:SG, chr12:14901082:SG | chr15:57923529:SG, chr15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, chr15:58065219:1G |
|  |  |  | chr12:14847029:SG, chr12: 14847226:SG, chr12:14854918:16, chr12:14883768:SG, chr12:14885854:SG, chr12:14901082:SG | chr15:57923529:SG, chr15:58063976:IG, chr15:58064164:SG, chr15:58064657:SG, |
|  | UBERON_OOOO995 UBERON 000996 |  | chr12:14885854.56 | chr15:58065219:16 |
|  |  |  | chr12:14885854.56 |  |

The variants are shown by their position in Build 38 , with $5 G$ ending for $5 N P 5$ and $1 G$ for indels

Supplementary Table 6. Co-localisation of EHOA variants and expression of genes at the EHOA loci (eQTL)

| EHOA variants | chr:pos(hg38) | EA / OA | Freq\% EA | OR | Gene |  | Tissue | eQTL variant | $\mathrm{r}^{2}$ | EA / OA | Freq\% EA | Effect | P value | Source | \# individuals/tissue | COLOC PP3 | COLOC PP4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs17013495 | chr4:87885460 | T/C | 59.6 | 1.4 | SPP1 |  | Spleen | rs4693198 | 0.91 | C/T | 59.6 | -0.48 | 1.15-09 | GTEx v8 | 227 | 0.12 | 0.88 |
|  |  |  |  |  |  | " | Esophagus - Mucosa | rs4693897 | 0.91 | G/T | 59.5 | -0.32 | 1.4E-08 | GTEx v8 | 497 | 1.00 | 0.00 |
|  |  |  |  |  |  | " | Whole blood | rs12644436 | 0.91 | G/A | 59.4 | -0.18 | 9.0E-09 | GTEx v8 | 670 | 1.00 | 0.00 |
| rs1800801 | chr12:14885854 | T/C | 37.2 | 1.37 | MGP |  | Lung | rs11614330 | 0.98 | T/C | 36.9 | -0.19 | 5.9E-13 | GTEx v8 | 515 | 0.09 | 0.91 |
|  |  |  |  |  |  | " | Thyroid | rs4581512 | 0.95 | T/G | 37.4 | -0.17 | 3.14-08 | GTEx v8 | 574 | 0.05 | 0.95 |
|  |  |  |  |  |  | " | Adipose | rs9668569 | 0.91 | T/C | 37.2 | -0.53 | $2.8 \mathrm{E}-22$ | deCODE | 770 | 0.08 | 0.92 |
|  |  |  |  |  |  | " | Blood* | rs11056199 | 0.89 | C/A | 39.9 | 0.40 | 6.9E-226 | deCODE | 17,940 | 1.00 | 0.00 |
| rs11631127 | chr15:57977811 | C/G | 57.6 | 1.46 | ALDH1A2 |  | Cultured fibroblasts | rs3742961 | 0.93 | C/T | 60.2 | -0.30 | $9.0 \mathrm{E}-11$ | GTEx v8 | 483 | 0.14 | 0.86 |

Data is shown for datasets in GTEx and deCODE genetics. For each variant the gene whose expression is correlated with the erosive variants is shown (Gene), the tissue (Tissue), the top expression variant (eQTL variant), the correlation between the top expression (
variant and the erosive variant (r2), the effect allele (EA) and the other allele (OA) of the variants, the frequency of their effect allele (Freq\% EA), the effect on transcription in standard deviation (Effect), the P value of the expression correlation, the source of data (Source), and the number of individuals in each analysis (\# individuals/tissue). The position of the erosive variants are shown in build 38 , and the OR af the association with erosive osteoarthritis. PP3 is the posterior probability for two independent signals, and PP4 et al, PLoS genetics. 2014;10(5)::1004383)

* The expression of MGP in blood is very low but the direction of effect is consistent with that reported by den Hollander, W. et al, 2017

Supplementary Table 7. Co-localisation of the EHOA associated variants and levels of proteins in plasma (cis-pQTL)

| Erosive variants | chr:pos(hg38) | EA / OA | Freq\% EA | OR | Gene | Protein | PQTL variant | $r^{2}$ | EA / OA | Freq\% EA | Effect | P value | COLOC PP3 | coloc PP4 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs17013495 | chr4:87885460 | T/C | 59.6 | 1.396 | SPP1 | Osteopontin | rs990862 | 0.80 | T/C | 65.9 | -0.063 | 1.8E-13 | 1.00 | 0.00 | Five independent cis-signals for SPP1, and 2 independent trans signals. Rs990862 explains $5 \%$ of the variance explained by the pQTLs |
| rs1800801 | chr12:14885854 | T/C | 37.2 | 1.37 | MGP | Matrix Gla Protein | rs7294636 | 0.99 | A/G | 37.4 | -0.250 | 8.3E-111 | 0.12 | 0.88 | Two independent cis-signals for the MGP protein (in opposite directions), and 6 trans signals. Rs12307494 explains $72 \%$ of the variance explained by the pQTLs. |

Data is based on proteins measured in plasma from 35,339 in Iceland (deCODE genetics) using the Somalogic platform. The top variant that correlates with the levels of the protein (Protein) and its encoding gene (Gene) in plasma (pQTL variant) is shown, and the correlation between the top PQTL variant and the erosive variant ( r ), the effect allele (EA) and the other allele ( $O A$ ) of the variants, the frequency of their effect allele (Freq\% EA), the effect on protein levels in standard deviation (Effect), and the P value of the protein level-variant correlation. The position of the erosive variants are shown in build 38 (chrps

PP3 is the posterior probability for two indenendent signals, and PP4 is
the posterior probability for one shared signals using COLOC (Giambartolomeiet al PLOS genetics. 2014:10(5):e1004383)

Supplementary Table 8. Lead sequence variants for two of the four EHOA signals, or their correlated variants, reside within enhancer elements that are predicted to affect nearby genes in different tissue/cell types based on EpiMap (http://compbio.mit.edu/epimap/).

| Tissue / cell type | rs1800801 | rs11631127 |
| :---: | :---: | :---: |
|  |  | (chr15:5797811) |
| ACUTE_LYMPHOBLASTIC_LEUKEMIA | MGP (chr12:14854918:IG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14901082:SG) |  |
| ACUTE_PROMYELOCYTIC_LEUKEMIA | MGP (chri2: 14854918 :16) |  |
| ADENOID_CYSTIC_CARCINOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G) |  |
| ADIPOCYTE | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G) |  |
| ADIPOCYTE_FROM_MSC | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:5G, chr12:14901082:SG) |  |
| ADIPOSE_TISUE | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG, chr12:14901082:SG) |  |
| ADRENAL_GLAND | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG), WBP11 (chr12:14847029:SG, chr12:14894016:SG) | ALDH1A2 (chr15:58061348:5G) |
| AMMONS_HORN | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |  |
| AMNION | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), WBP11 (chr12:14844512:SG) |  |
| AMNION_PPTHELLAL_CELL | ART4 (chr12:14835521:SG) |  |
| AMNION_STEM_CELL | ART4 (chr12:14840136:5G, chr12:14840214:SG, chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:SG) |  |
| AMNIOTIC_FLUID_FROM_MSC | MGP (chr12:14854918:1G) |  |
| AnGULAR_Grrus | ART4 (chr12:14835521:SG), MGP (chr12:14894016:SG) <br> ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, |  |
| AORTA | chr12:14840920:SG, chr12:14854918:IG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG, chr12:14901082:SG) |  |
| AORTA_FIBROBLAST | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG) |  |
| ARM_MUSCLE | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG), WBP11 (chr12:14894016:SG) |  |
| ASCENDING_AORTA | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG), WBP11 (chr12:14844512:SG, chr12:14890950:SG, chr12:14890963:SG), MGP (chr12:14844512:SG, chr12:14847029:SG, chr12:14854918:IG, chr12:14878220:SG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG) |  |
| AStrocyte | ART4 (chr12:14835521:5G, chr12:14847029:SG), MGP (chr12:14847029:5G) |  |
| ASTROCYTE_HIPPOCAMPUS | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG) |  |
| ASTROCYTE_SPINAL_CORD | MGP (chr12:14854918:16) |  |
| B_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14894016:SG) | ALDH1A2 (chr15:58061348:56) |
| B_CEL_LYMPHOMA | ART4 (chr12:14835521:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14854918:IG, chr12:14878220:SG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG) |  |
| BACK_MUSCLE | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG), WBP11 (chr12:14894016:SG) |  |
|  | ART4 (chr12:11840136:SG, chr12:14840214:SG, chr12: 14840505:SG, chr12:14840674:SG, chr12:14840920:SG, |  |
| BODY_Of_PANCREAS | chr12:14847029:SG), WBP11 (chr12:14847029:SG, chr12:14894016:SG), MGP (chr12:14847029:SG, chr12:14894016:SG) |  |
| BONE_ARM | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |  |
| bone_femur | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |  |
| BONE_LEG | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |  |
| BONE_MARROW_EPTTHELAL_CEL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |  |
| BONE_MARROW_STROMA | ART4 (chr12:11840136:SG, chr12:148402214:SG, chr12: 14840505:5G, chr12:14840674:SG, chr12:14840920:SG) |  |
| BONE_MARROW_STROMAL_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG), WBP11 (chr12:14894016:SG) |  |
| BRain | MGP (chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG) |  |
| brain_microvascular_endothelat_cell | MGP (chr12:14854918:16) |  |
| brain_Vasculature_smooth_Muscle_cell | MGP (chr12:14894016:SG) |  |
| BREAST_EPTTHELAL_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), GUCY2C (chr12:14911328:SG) |  |
| BREAST_EPTHELUM | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14854918:IG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG), H2AJ (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14894016:SG) |  |
| BrEASt_fibroblast | ART4 (chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG) |  |
| BRONCHAL_EPPTHELAL_CELL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |  |
| BURKIT_LYMPHOMA | MGP (chr 12:14854918:1G), WBP11 (chr12:14854918:1G) |  |
| CARDIAC_FIBROBLAST | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:5G, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:S6) |  |
| CARDIAC_MUSCLE_DERIV | ART4 (chr12:14835521:SG) |  |
| CARDIAC_MYOCYTE | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G, chr12:14894016:SG) |  |
| CAUDATE_NUCLEUS | ART4 (chr12:14835521:SG), MGP (chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG), WBP11 (chr12:14894016:SG) |  |
| CD34_CMP | ART4 (chr12:14835521:SG), MGP (chr12:14854918:16), GUCY2C (chr12:14911328:SG) |  |
| CD4_T_CEL | ERP27 (chr12:14911328:SG) | ALDH1A2 (chr15:58061348:SG) |
| CD8_T_CEL |  | CGNL1 (chr15:58061348:SG), ALDH1A2 (chr15:58061348:SG), GCOM1 (chr15:58061348:SG), LIPC (chr15:58061348:SG) |
| CEREBELLAR_CORTEX | MGP (chr12:14897475:SG, chr12:14897803:SG) |  |
| CEREBELLUM | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |  |
| CERVIX_ADENOCARCINOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |  |


| CHORION | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG, chr12:14854918:IG, chr12:14901082:SG), ERP27 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), H2A (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14847029:SG) |
| :---: | :---: |
| Chorionic_vilus | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), ERP27 (chr12:14840920:SG) |
| CHOROID_PLEXUS_EPTTHELAL_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG) |
| CInGulate_Gyrus | ART4 (chr12:14835521:SG), MGP (chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| COLON_CARCINOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| COLOn_EPTTHELAL_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG) |
| COLON_MUCOSA | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14894016:SG), MGP (chr12:14894016:SG) |
| COLON_MUSCLE | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| COLORECTAL_ADENOCARCINOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| CONunNCTVA_FIBROBLAST | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG) |
| CORONARY_ARTERY | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG), WBP11 (chr12:14844512:SG), MGP (chr12:14844512:SG, chr12:14847029:SG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG) |
| DERMI_BLOOD_VESSEL_ENDOTHELAL_CELL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG, chr12:14894016:SG), WBP11 (chr12:14894016:SG), GUCY2C (chr12:14911328:5G) |
| DERMIS_FIEROBLAST | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG, chr12:14901082:SG) |
| DERMIS_YMPHATIC_VESSEL_ENDOTHELAL_CELL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| DESMOPLASTIC_MEDULLOBLASTOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| DUODENUM_MUCOSA | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG) |
| DUODENUM_MUSLLE | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG) |
| Embryonic_facial_prominence | MGP (chr12:14854918:IG, chr12:14894016:SG) |
| endocrine_pancreas | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG) |
| endodermal_deriv | MGP (chr12:14894016:SG) |
| ENDOMETRIAL_ADENOCARCINOMA | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG), WBP11 (chr12:14844512:SG), MGP (chr12:14847029:SG, chr12:14894016:SG) |
| EPIDERMAL_MELANOCYTE | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| ESC | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14854918:IG) |
| ESOPHAGUS | WBP11 (chr12:14894016:SG), MGP (chr12: 14894016:SG) |
| ESOPHAGUS_MUSCULARIS_MUCOSA | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG, chr12:14901082:SG) |
| ESOPHAGUS_SQUAMOUS_EPTTHELUM | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG) |
| eye_retinoblastoma | ART4 (chr12:14835521:5G) |
| fibrosarcoma | ART4 (chr12:14840136:5G, chr12:14840214:5G, chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:5G) |
| FORESKIN_FIBROBLAST | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG) |
| Foreskin_keratinocyte | ART4 (chr12:14840136:5G, chr12:14840214:5G, chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:5G) |
| foreskin_melanocyte | ART4 (chr12:118335521:SG, chr12: 14851053:SG, chr12:14851097:16), MGP (chr12:14854918:1G, chr12:148940 |
| FRONTAL_CORTEX | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| GASTROCNEMIUS_MEDIALIS | ART4 (chr12:14835521:SG, chr12:14840136:5G, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG), WBP11 (chr12:14894016:SG) |
| GASTROESOPHAGEAL_SPHINCTER | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG, chr12:14901082:SG) |
| GERMINal_Center | MGP (chr12:14854918:1G) |
| germinal_matrix | ART4 (chr12:14835521:5G) |
| GINGIVAL_FIBROBLAST | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G) |
| globlastoma | ART4 (chr12:14840136:5G, chr12:14840214:SG, chr12:148405055:SG, chr12:14840674:SG, chr12:14840920:SG) |
| GLobus_pallious | MGP (chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| glomerulus_endothelal_cell | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG) |
| GLOMERULUS_EPTTHELAL_CEEL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| GLOMERULUS_VISCERAL_EPTTHELIAL_CELL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| HEART | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG, chr12:14878220:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG), WBP11 (chr12:14894016:SG) |
| heart_Left_Atrium | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14844512:SG), MGP (chr12:14878220:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG) |
| heart_Lef_Ventricle | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG, chr12:14901082:SG), WBP11 (chr12:14894016:SG, chr12:14901082:SG) |
| HEART_RIGHT_ATRIUM | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG), WBP11 (chr12:14844512:SG), MGP (chr12:14847029:SG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG, chr12:14901082:SG) |

heart right ventricle
hepatic_stellate_cell
hepatocelular_carcinoma

## HEPATOCYTE_DERIV

hippocampus INFERIOR_PARIIETAL_CORTEX

IRII_PIGMENT_EPITHELAL_CEL
ISET_PRECURSOR_CELL

KERATINOCYTE

KIDNE
KIDNEY_CAPILLARY_ENDOTHELAL_CELL
kidney_cell
KIDNEY_CLEAR_CELL_CARCINOMA
KIDNEY_EPTTHELIAL_CELL
KIDNEY_RHABOID_TUMOR
LARGE_CEL_LUNG_CANCER

Large intestine

LEG_MUSCLE
LIMB_EmbRYO

LIVER
lung

LUNG_ADENOCARCINOMA

LUNG_EPITHELIAL_CARCINOMA

UNG_FIBROBLAST

LUNG_MICROVASCULAR_ENDOTHELIAL_CELL
LYMPHOBLASTOID_CEL_LINE
LYMPHOCYTE
MAMMARY_EPTHELIAL_CELL
MAMMARY_FIBROBLAST

MAMMARY_GLAND_ADENOCARCINOM

MAMMARY_GLAND_DUCTAL_CARCINOMA
MAMMARY_LUMINAL_EPITHELIAL_CELL
MAMMARY_MYOEPITHELIAL_CELL
MAMMARY_STEM_CELL
medulla oblongata
medulloblastoma

MELANOMA

MESENCHYMAL_STEM_CELL

MESODERMAL_DERIV
midbrain
MIDDLE_FRONTAL_AREA

MPP
MUSCLE_EWING_SARCOMA
myelogenous_leukemia
myeloma

ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:1G, chr12:14879926:SG, Chr12:14894016:SG, MH12:14901082:SG

0136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG, chr12:14851053:SG, chr12:14851097:1G), MGP (chr12:14847029:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G, chr12: 14894016:SG)
ART4 (chr12:14835521:SG), MGP (chr12:14894016:SG)
MGP (chr12:14854918:IG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, ART4 (chr12:14835521:5G, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG,
chr12:14840920:SG, chr12:14851033:SG, chr12:14851097:IG), MGP (chr12:14840136:5G, chr12:14840214:SG,
chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)

ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG,
chr12:14851053:SG, chr12:14851097:1G) MGP (chr12:14897475:SG, chr12:14897803:SG) chr12:14851053:SG, chr12:14851097:1G), MGP (Chr12:14897475:SG, chr12:14897803:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG, chr12:14901082:SG), WBP11 (chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12::14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)
chr12:14840505:SG,
ART4 (chr12:148355521:S6
chr12:14840920:SG)
ART4 ( (chr12:14835521:SG)
ART4 (chr12:14835521:SG)
MGP (chr 12:14897475:SG, chr12:14897803:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)

14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, Chr12:14840920:SG, chr12:14844512:SG), H2A) (chr12:14836364:SG), MGP (chr12:14840136:SG,
chr12:14840214:SG, chr12:14840505:SG, chr12 $14840674: 5 G$, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG
chr12:14894016:SG), WBP11 (chr12:14844512:SG, chr12:1489016 ART4 (chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG), WBP11 (chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, Chr12:14840920:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14894016:SG, chr12: 14897475:SG, chr12:14897803:SG), WBP11 (chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12::14840920:SG, chr12:14844512:SG, chr12:14847029:SG), H2A) (chr12:14836364:SG, chr12:14840136:SG,
chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) MGP (chr1: $14840136: S G$ Chr12::14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:1484013
chr12:14840214:SG, chr12:1484005:SG, chr12:1484067:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG, chr12:14894016:SG, chr12:14901082:SG), GUCY2C (chr12:14840136:5G, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14844512:SG)

ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12: 14840920:SG, chr12:14844512:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14901082:SG), WBP11 (chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:5G, chr12:14840674:SG,
chr12:14840920:5G, cri2:1484412:SGG chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG), MGP (chr12:14840136:SG, chr12:14840214:SG,
chr12:14840505:SG, chr12:14840674:SG, chrr12:14840920:SG, chr12:14847029:SG), ERP27 (chr12:14840136:SG chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14844512:SG, chr12:14847029:SG)
ART4 (chr12::14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG, chr12:14901082:SG), WBP11 (chr12:14894016:SG)
chr12:14840920:SG) MGe, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG chr12:14840920:SG), MGP (chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:/IG), MGP (chr12: 14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14854918:IG
MGP (chr12:14854918:IG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)
ART4 (chr12: 14835521:SG, chr12:14840136:SG, chr12: 14840214:SG, chr12: 14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (Chr12:14854918:1G, chr12:14894016:SG, chr12:14901082:SG

ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14840920:SG, chr12:14854918:1G, chr12:14901082:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14840920:SG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14901082:SG)
ART4 (chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG)
ART4 (chr12: 14840136:SG, chr12:14840214:SG, chr 12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) MG (Chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG), GUCY2C (chr12:14911328:SG)
ART4 (chr12:14847029:SG), MGP (chr12: 14847029:SG, chr12: 14894016:SG)
MGP (chr12:14894016:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) ERP27 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14894016:SG), WBP11 (chr12:14894016:SG), GUCY2C (chr12:14911328:5G)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12: 14840505:SG, chr12: 14840674:SG, chr12:14840920:SG), H2AA (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chrr2: $14840920: 5 G$ ),
chr12:14901082:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG)
MGP (chr12:14894016:SG)
MGP (chr12:14894016:SG)
MGP (chr12: 14894016:SG)
MGP (chr12:14894016:SG)
ART4 (chri2:1483S521.SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:1484067
chr12:14840920:SG, chr12:1184: chr12::14440920.5G, chr12:14844512:SG, chr12:14847029:SG), ATF7IP (chr12:14836364:SG), WBP11
(chr12:1484512:SG, chr12:14901022:SG) chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG
MGP (chr12:14894016:SG, chr12:14897475::SG, chr12:14897803:SG)
ART4 (chr12:148355521:SG, chrr12:14840136:SG, chr12::14840214:SG, chr12:14840505:SG, chr12:14840674:SG,
chr12:1484092:SG)
ART4 (chr12:14851053:SG, chr12:14851097:IG)

MYOCYTE
NEURAL_PROGENITOR_DERIV
neuroblastoma
NEUROEPTTHELIOMA
neuroglioma
NEURON_DERIV
neurosphere
NON-PIGMENTED_CILARY_EPITHELAL_CEL
OCCIPITAL_LOBE
olfactory_neurosphere
OMENTAL_FAT_PAD
osteoblast
osteosarcoma

OVARY
pancreas
PANCREATIC_DUCT_EPITHELAL_CELL PARATHYROID_ADENOMA
PERICYTE
Peridontal ligament fibroblast
PEYERS_PATCH
placenta
PLASMA_CEL_MYELOMA PONS

PROSTATE_ADENOCARCINOMA
PROSTATE_EPITHELAAL_CARCINOMA

PROSTATE_EPTHELIAL_CELL
PROSTATE_GLAND
Proximal_tubule epithelal cell PSOAS_MUSCLE
pULMONARY_ARTERY_ENDOTHELAL_CELL
PULMONARY_ARTERY_FIBROBLAST
putamen
rectum_mucosa
RECTUM_MUSCLE
renal_cell_adenocarcinom
renal_cell_carcinoma
renal_cortex_INTERStitium
RENAL_CORTICAL_EPTTHELAAL_CEL
RENAL_PELVIS

SIGMOID_COLON

SKELETAL_MUSCLE
SKELETAL MUSCLE CELL
SKELETAL_MUSCLE_MYOBLAST
SKELETAL_MUSCLE_SATELITE_CELL
SKIN_FIBROBLAST

SKIN_LEG
skin of body
small_Intestine
SMOOTH_MUSCLE_DERIV
SPINAL_CORD

SPLEEN

SQUAMOUS_CEL_CARCINOMA

ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:SG)
ART4 (chr12:14835521:SG), MGP (chr12:14854918:IG, chr12:14894016:SG)
ART4 (chr12:14835521:5G)
ART4 (chr12:14835521:5G)
MGP (chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) ART4 (chr12:14835521:SG, chr12:14847029:SG), MGP (Chr12:14847029:SG, chr12:14901082:SG), WBP1 (chr12:14901082:SG)
ART4 (chr12:14835521:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG)
MGP (chr12:14894016:SG)
ART4 (chr12::148355521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12: 14840920:SG), MGP (chr12: 14894016:SG), WBP11 (chr12:14894016:SG)
ART4 (chr 12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG), WBP11 (chr12: 14894016:SG
ART4 (ch12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, (chr12:14854918:16)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:1G, chr12:14897475:SG, chr12:14897803:SG

ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG), STRAP (chr12:14890950:SG, chr12:14890963:SG), WBP11 (chr12:14894016:SG (chr12:149001082:SG)
WBP11 (chr12:14835521:SG), ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG,
chr12:14840505:5G, chr12:14840674:SG, chr12:14840920:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14894016:SG)
MGP (chr12:14854918:1G)
MGP (chr12:14854918:IG)
MGP (chr12:14854918:1G)
(chr12:14894016:SG, chr12:14901082
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG,
chr12::14840920:SG, chr12:14844512:SG, chr12::14851053:SG, chr12:14851097:IG), MGP (chr12:14844512:SG,
chr12:14894016:SG, chr12:14901082:SG), WBP11 (chr12:14901082:SG)
ART4 (chr12:14851053:SG, chr12:14851097:1G)
MGP (chr 12:14894016:SG)
. chr12:14840920:SG
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), SMCO3 (chr12:14840920:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12: 14840674:SG, chr12:14840920:SG)
ART4 (chr12:1416136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG
(chr12:1489401
chr12:14840920:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, Ahr12:14840920:SG), MGP (chr12:14894016:5G, chr12:14901082:SGG) ART4 (chr12:14835521:SG, chr12:11840116:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG,
chr12: $14840920: 5 G$ ), MGP (chr12: $14854918: 1 G$, chr12:1489014 chr12:14840920:SG), MGP (chr12:14854918:1G, chr12:14894016:SG), WBP11 (chr12:14894016:SG) MGP (chr12:14894016:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (Chr12:14847029:SG, chr12: 14894016:SG), GUCY2C (chr12:14911328:SG)
MGP (chr12:14894016:SG, chr12:14901082:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG,
chr12:14840920:SG) ART4 (chr12:148355
chr12:14840920:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14894016:SG), WBP11 (chr12: 14894016:SG)
ART4 (chr 12: 14840136:SG, chr12:14840214:SG, chr12:14840505:5G, chr12: 14840674:SG, chr12:14840920:SG), GUCY2C (chr12:14911328:SG)
chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14894016:SG), WBP11 (Chr12: 14894016:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14854918:1G, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SGG), GUCY2C
(chr12:14911328:SG) (chr12:14911328:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:1G, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12: 14840674:SG, chr12:14840920:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12: 14840674:SG, chr12:14840920:SG), MG
(chr12:14854918:1G)
ART4 (chr12:14835521:SG, chr12:14840136:5G, chr12:14840214:5G, chr12:14840505:5G, chr12:14840674:SG,
chr12:14840920:SG, chr12:14847029:SG), WBP11 (chr12:14847029:SG), MGP (chr12:14847029:SG,
Chr12:14854918:1G, chr12:14897475:SG, chr12:14897803:SG)
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG)
MGP (chr 12:14847029:SG, chr12:14894016:SG
ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP
(chr12:14894016:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14854918:IG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14899824:SG, chr12:14899901:SG, chr12:14900018:SG
ART4 (Chr12:14835521:SG), MGP (Chr12:14854918:1G, chr12:14894016:SG), WBP11 (chr12:14894016:SG) ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG, chr12:1484050:SG, chr12:14840674:SG, chri2:14840920:SG, chr12:148441512:SG, chr12:1484029:SG,
chr12:14894016:SG), ERP27 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), H2AJ (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), WBP11 (chr12:14844512:SG)
ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG)
ART4 (chr12:14835552:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, WBP11 (chr12:14894016:SG

| STOMACH_MUSCLE | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| :---: | :---: |
| SUBSTANTIA_NIGRA | ART4 (chr12:14835521:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG) |
| SUPERIOR_TEMPORAL_GYRUS | MGP (chr12:14894016:SG) |
| T17_CELL | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| temporal_LOBE | ART4 (chr12:14835521:SG), MGP (chr12:14894016:SG) |
| TESTIS | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14847029:SG, chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| THORACIC_AORTA | ART4 (chr12:14835521:SG, chr12: 14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14844512:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14854918:IG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG, chr12:14901082:SG) |
| THYROID_GLAND | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), H2A (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14844512:SG, chr12:14847029:SG, chr12:14854918:1G, chr12:14894016:SG) |
| TIBAL_ARTERY | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14894016:SG) |
| TIBAL_NERVE | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG), WBP11 (chr12:14901082:SG) |
| tongue | MGP (chr12: 14854918:IG, chr12:14894016:SG) |
| TRANSVERSE_COLON | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MG (chr12:14894016:SG), WBP11 (chr12:14894016:SG) |
| TROPHOBLAST | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14854918:IG, chr12:14901082:SG) |
| TROPHOBLAST_DERIV | ART4 (chr12:14835521:SG, chr12:14851053:SG, chr12:14851097:1G) |
| TRUNK_MUSCLE | MGP (chr12::14847029:SG, chr12:14854918:1G, chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG), ART4 (chr12:14847029:SG) |
| tubule_cell | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG) |
| UMBILICAL_CORD | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG), MGP (chr12:14894016:SG, chr12:14897475:SG, chr12:14897803:SG) |
| UMBILICAL_VEIN_ENDOTHELAL_CELL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12: 14847029:SG, chr12:14854918:IG, chr12:14879684:SG, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14894016:SG), WBP11 (chr12:14847029:SG, chr12:14894016:SG) |
| URINARY_BLADDER | ART4 (chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14901082:SG), WBP11 (chr12:14894016:5G) |
| UROTHELIUM_CEL | ART4 (chr12:14835521:SG, chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12::14840674:SG, chr12:14840920:SG) |
| UTERUS | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14847029:SG), MGP (chr12:14847029:SG, chr12:14894016:SG, chr12:14901082:SG) |
| VAGINA | ART4 (chr12:14840136:SG, chr12:14840214:SG, chr12:14840505:SG, chr12:14840674:SG, chr12:14840920:SG, chr12:14851053:SG, chr12:14851097:IG), MGP (chr12:14847029:SG, chr12:14879684:5G, chr12:14879827:SG, chr12:14879925:IG, chr12:14879926:SG, chr12:14890950:SG, chr12:14890963:SG, chr12:14894016:SG, chr12:14901082:SG) |
| VILLOUS_MESENCHYME_FIBROBLAST | MGP (chr12:14854918:16) |

Supplementary Table 9. Enrichment-Analysis: EHOA association signals are nominally enriched within regulatory regions specific for vascular/endothelial cell types.

| Annotation | Number of <br> overlapping <br> GWAS loci | $\boldsymbol{P}$-value | Expected <br> intersection (95\%CI) | Observed <br> intersection (95\%CI) | Enrichment (95\%CI) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Vascular-endothelial | 4 | 0.011 | $0.35(0-0.75)$ | $1(1.00-1.00)$ | $2.84(2.84-2.84)$ |
| Pulmonary development | 3 | 0.06 | $0.31(0-0.75)$ | $0.75(0.25-1)$ | $2.44(0.813-3.25)$ |
| Musculoskeletal | 3 | 0.27 | $0.50(0-1)$ | $0.75(0.25-1)$ | $1.52(0.505-2.02)$ |
| Digestive | 3 | 0.29 | $0.51(0.25-1)$ | $0.75(0.369-1)$ | $1.47(0.723-1.96)$ |
| Myeloid-erythroid | 3 | 0.41 | $0.57(0-1)$ | $0.75(0.369-1)$ | $1.32(0.65-1.76)$ |
| StromalA | 1 | 0.59 | $0.21(0-0.5)$ | $0.25(0-0.75)$ | $1.21(0-3.61)$ |
| Renal-cancer | 2 | 0.69 | $0.47(0-0.75)$ | $0.5(0-1)$ | $1.06(0-2.12)$ |
| Organ development-renal | 2 | 0.72 | $0.50(0-1)$ | $0.5(0-1)$ | $0.99(0-1.99)$ |
| StromalB | 3 | 0.76 | $0.73(0.25-1)$ | $0.75(0.25-1)$ | $1.03(0.342-1.37)$ |
| Lymphoid | 2 | 0.52 | $0.60(0.25-1)$ | $0.5(0-1)$ | $0.83(0-1.66)$ |
| Primitive-embryonic | 3 | 0.55 | $0.82(0.5-1)$ | $0.75(0.25-1)$ | $0.91(0.304-1.22)$ |
| Placental-trophoblast | 2 | 0.48 | $0.63(0.25-1)$ | $0.5(0-1)$ | $0.80(0-1.6)$ |
| Cardiac | 1 | 0.51 | $0.38(0-0.75)$ | $0.25(0-0.75)$ | $0.66(0-1.99)$ |
| Cancer-epithelial | 1 | 0.47 | $0.43(0-1)$ | $0.25(0-0.75)$ | $0.58(0-1.75)$ |
| Neural | 2 | 0.30 | $0.71(0.25-1)$ | $0.5(0-1)$ | $0.70(0-1.41)$ |
| Tissue-invariant | 0 | 0.034 | $0.52(0-1)$ | $0(0-0)$ | $0(0-0)$ |

Supplementary Table 10. Association of EHOA variants and correlated GWS variants in public datasets

| Locus | Variant | EHOA / Correlated GWS | EA | NEA | LD (r2) | P-value | Beta | Odds Ratio | Trait | PMID | N Cases | N Overall | Study ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 8.5E-21 | 0.018 |  | Urate |  |  | 411,640 | UKBio_deCODE |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 1.7E-07 |  | 1.06 | Gout |  | 16,353 | 431,047 | UKBio_deCODE |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 1.8E-07 |  | 0.93 | Plantar_fascial_fibromatosis |  | 12,959 | 431,047 | UKBio_deCODE |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 4.8E-07 | 0.038 |  | Pelvis_DXA_BMD |  |  | 35,596 | UKBio_deCODE |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 5.2E-07 | -0.013 |  | Alkaline phosphatase |  |  | 412,141 | UKBio_deCODE |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 5.3E-07 | -0.090 |  | Hand grip strength (left) |  |  | 359,704 | NEALE2_46_raw |
| 4q22.1-MEPE | rs17013495 | EHOA | T | c |  | 8.1E-07 | 0.037 |  | Trunk_DXA_BMD |  |  | 35,596 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 5.0E-35 | -0.029 |  | Mean_grip_strength |  |  | 427,745 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 8.6E-33 | -0.219 |  | Hand grip strength (left) |  |  | 359,704 | NEALE2_46_raw |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 8.2E-27 | -0.197 |  | Hand grip strength (right) |  |  | 359,729 | NEALE2_47_raw |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 1.18-14 | -0.015 |  | Heel bone mineral density | PMID:30598549 |  | 426,824 | GCST006979 |
| 12p12.3-MGP | rs1800801 | еноА | T | c |  | 6.4E-11 |  | 1.05 | Any fracture over 40 years |  | 55,982 | 431,047 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | еноА | T | c |  | 2.2E-10 | -0.016 |  | Speed_of_sound_through_heel_Sos |  |  | 399,133 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 1.4E-09 | -0.015 |  | Heel bone mineral density |  |  | 398,823 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 2.9E-09 |  | 1.03 | Any fracture |  | 103,590 | 431,047 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 4.55-09 | -0.015 |  | Heel_bone_ultrasound_T_score |  |  | 401,039 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | еноА | T | c |  | 1.55-08 |  | 1.04 | Low hand grip strength (60 years and older) (EWGSOP) | PMID:33510174 | 48,596 | 256,523 | GCST90007526 |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 7.2E-08 | -0.041 |  | DXA_Arms_BMD |  |  | 35,597 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 1.7E-07 | -0.013 |  | Heel_broadband_ultrasound_attenuation_BUA |  |  | 398,131 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 1.9E-07 | -0.010 |  | Appendicular lean mass | PMID:33097823 |  | 450,243 | GCST90000025 |
| 12p12.3-MGP | rs1800801 | еноА | T | c |  | 2.3E-07 |  | 1.04 | Arthrosis_unspecified |  | 46,615 | 431,047 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 4.8E-07 |  | 1.04 | Fractured/broken bones in last 5 years |  | 34,780 | 359,241 | NEALE2_2463 |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 8.9E-07 | -0.012 |  | Creatinine |  |  | 411,927 | UKBio_deCODE |
| 12p12.3-MGP | rs1800801 | EHOA | T | c |  | 9.3E-07 |  | 1.04 | Fracture low trauma |  | 35,439 | 431,047 | UKBio_deCODE |
| 12p12.3-MGP | rs3887182* | Correlated GWS | A | G | 0.92 | 3.0E-213 | 0.721 |  | Blood protein levels [ART4, 6576_1_3] | PMID:30072576 |  | 3,200 | GCST006585_131 |
| 12p12.3-MGP | rs67482087* | Correlated GWS | G | T | 0.98 | 8.0E-182 | 0.690 |  | Blood protein levels [ART4, 6576_1_3] | PMID:30072576 |  | 3,200 | GCST006585_131 |
| 12p12.3-MGP | rs2287226 | Correlated GWS | G | A | 0.91 | 5.3E-33 | -0.220 |  | Hand grip strength (left) |  |  | 359,704 | NEALE2_46_raw |
| 12p12.3-MGP | rs11056198 | Correlated GWS | A | G | 0.91 | 7.7E-28 | -0.201 |  | Hand grip strength (right) |  |  | 359,729 | NEALE2_47_raw |
| 12p12.3-MGP | rs2430689 | Correlated GWS | G |  | 0.87 | 3.0E-16 | -0.016 |  | Heel bone mineral density | PMID:30598549 |  | 426,824 | GCST006979 |
| 12p12.3-MGP | rs67482087 | Correlated GWS | G | T | 0.98 | 2.0E-15 | -0.199 |  | Blood protein levels [MGP, 6520_87_3] | PMID:30072576 |  | 3,200 | GCST006585_1144 |
| 12p12.3-MGP | rs4764133 | Correlated GWS | T | c | 0.97 | $2.0 \mathrm{E}-15$ | 0.830 |  | Osteoarthritis of the hand | PMID:28855172 |  | 12,754 | GCST009596 |
| 12p12.3-MGP | rs2430690 | Correlated GWS | c |  | 0.84 | 3.0E-15 |  |  | Heel bone mineral density | PMID:30595370 |  | 446,000 | GCST007066 |
| 12p12.3-MGP | rs2430689 | Correlated GWS | G | c | 0.87 | 5.0E-14 |  |  | Heel bone mineral density | PMID:30048462 |  | 394,929 | GCST006433 |
| 12p12.3-MGP | rs4764133 | Correlated GWS | T | c | 0.97 | 5.0E-14 | 0.650 |  | Finger osteoarthritis severity (hand KIsum) | PMID:33055079 |  | 2,994 | GCST90010717 |
| 12p12.3-MGP | rs2287226 | Correlated GWS | G | A | 0.91 | 1.0E-12 | -0.002 |  | Hand grip strength | PMID:29691431 |  | 334,825 | GCST005830 |
| 12p12.3-MGP | rs3887182 | Correlated GWS | A | G | 0.92 | 2.0E-12 | -0.172 |  | Blood protein levels [MGP, 6520_87_3] | PMID:30072576 |  | 3,200 | GCST006585_1144 |
| 12p12.3-MGP | rs11614333 | Correlated GWS | T | c | 0.91 | 2.0E-12 | -0.160 |  | Hand grip strength | PMID:29313844 |  | 195,180 | GCST005235 |
| 12p12.3-MGP | rs4764133 | Correlated GWS | T | c | 0.97 | 3.0E-12 | 0.810 |  | Hand osteoarthritis severity (hand Klsum) | PMID:33055079 |  | 6,032 | GCST90010716 |
| 12P12.3-MGP | rs10846071 | Correlated GWS | T | c | 0.92 | 4.0E-12 | -0.002 |  | Hand grip strength | PMID:29691431 |  | 334,825 | GCST005830 |
| 12p12.3-MGP | rs10630224 | Correlated GWS | TGC | T | 0.76 | 1.4E-10 |  | 1.06 | Low hand grip strength ( 60 years and older) (EWGSOP) | PMID:33510174 |  | 256,523 | GCST90007526 |
| 12p12.3-MGP | rs10630224 | Correlated GWS | TGC | T | 0.76 | 3.2E-09 |  | 1.07 | Low hand grip strength (60 years and older) (EWGSOP) | PMID:33510174 |  | 135,468 | GCST90007527 |
| 12p12.3-MGP | rs11419786 | Correlated GWS | tG | T | 0.63 | 1.3E-08 |  | 1.05 | Fractured/broken bones in last 5 years |  |  | 359,241 | NEALE2_2463 |
| 12p12.3-MGP | rs11056244 | Correlated GWS | A | T | 0.73 | 3.7E-08 | 0.524 |  | Impedance of arm (left) |  |  | 354,807 | NEALE2_23110_raw |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 1.22-07 |  | 1.17 | Polyarthrosis |  | 2,610 | 149,831 | FINNGEN_R5_M13_ARTHROSIS_POLY |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 1.5E-07 | -0.094 |  | Hand grip strength (right) |  |  | 359,729 | NEALE2_47_raw |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 1.9E-07 |  | 1.05 | Low hand grip strength (60 years and older) (EWGSOP) | PMID:33510174 | 34,589 | 135,468 | GCST90007527 |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 2.1E-07 |  | 0.97 | Knee pain \| pain type(s) experienced in last month |  | 76,628 | 360,391 | NEALE2_6159_7 |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 2.2E-07 |  | 0.96 | Knee_joint_operation |  | 28,317 | 431,047 | UKBio_deCODE |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 2.3E-07 |  | 1.04 | Low hand grip strength (60 years and older) (EWGSOP) | PMID:33510174 | 48,596 | 256,523 | GCST90007526 |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 3.8E-07 |  | 0.96 | Knee osteoarthritis |  | 37,270 | 430,938 | UKBio_deCODE |
| 15q21.3-ALDH1A2 | rs11631127 | EHOA | c | G |  | 3.3E-07 | -0.091 |  | Hand grip strength (left) |  |  | 359,704 | NEALE2_46_raw |

15q21.3-ALDH1A2
15q21.3-ALDH1A2
15q21.3-ALDH1A2
15921.3-ALDH1A2

15q21.3-ALDH1A2
15q21.3-ALDH1A2
15921.3-ALDH1A2

15q21.3-ALDH1A2
15921.3-ALDH1A2

15q21.3-ALDH1A2
15q21.3-ALDH1A2
15q21.3-ALDH1A2
0.95 Knee osteoarthritis Brain region volumes [X4th ventricle] Subcortical volume (min-P) Brain morphology (min-P) Brain morphology (min-P)
0.87 Barrett's esophagus
1.06 Knee o
0.84 Polyarhtrosis
$\begin{array}{llll}\text { PMID:30664745 } & 24,955 & 403,124 & \text { GCST007090 }\end{array}$
PMID:30664745 PMID:31676860 PMID:32665545
PMID:32665545 PMID:32665545 PMID:27527254 $\begin{array}{ll}19,629 & \text { GCSTOO9518_4 } \\ 26,502 & \text { GCST010698 }\end{array}$ $\begin{array}{ll}\text { 26,502 } & \text { GCST010698 } \\ 26,502 & \text { GCSTO10699 }\end{array}$ $\begin{array}{ll}26,502 & \text { GCST010699 } \\ 78,162 & \text { GCSTOO2410 }\end{array}$ 23,326 GCSTO0373 403,124 GCST007090

149,831 FINNGEN_R5_M13_ARTHROSIS_POL 360,391 NEALE2_6159_7

Association results assessed by UKBiobank associations at deCODE genetics, and by Open Targets Genetics (https://genetics.opentargets.org/) which summarizes association data for the variants in public datasets (UK Biobank, FinnGen, and GWAS Catalog). The site was accessed on Febuary, 23rd, 2022. The look-up results for the EHOA variants are shown directly, and for correlated variants ( $r^{2}>0.60$ ) that have been reported to associate with a given trait at a GWS level in the Open Targets $G$ Genetics database. The effect allele, the other

*We note that this association is most likely due to a missense variant in ART4 which changes the binding of the Somalogic probe to the plasma protein

## Supplementary Table 11. Association of EHOA variants with bone density, grip strength and urate levels

|  |  | FN_BMD$(N=107,310)$ |  |  |  | LS_BMD$(N=106,228)$ |  | eBMD$(N=398,823)$ |  | Grip strength$(N=427,745)$ |  | Urate$(N=411,640)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variant | Chr | EA | NEA | $P$ value | Effect | P value | Effect | $P$ value | Effect | $P$ value | Effect | $P$ value | Effect |
| rs17013495 | chr4 | T | C | 4.9E-04 | 0.015 | $1.6 \mathrm{E}-09$ | 0.028 | 0.89 | 0 | $1.9 \mathrm{E}-05$ | -0.010 | $8.5 \mathrm{E}-21$ | 0.018 |
| rs11243284 | chr6 | C | T | 0.082 | -0.008 | 0.0035 | -0.015 | 0.78 | -0.001 | 2.7E-03 | -0.007 | 0.76 | 0.001 |
| rs1800801 | chr12 | T | C | $1.4 \mathrm{E}-05$ | -0.019 | 8.9E-08 | -0.025 | $1.4 \mathrm{E}-09$ | -0.015 | 5.0E-35 | -0.029 | 0.036 | -0.004 |
| rs11631127 | chr15 | C | G | 0.59 | -0.002 | 8.3E-07 | 0.023 | 0.21 | -0.003 | $9.8 \mathrm{E}-10$ | -0.014 | 0.95 | 0 |

Results for eBMD, grip strength and urate levels are from the UK Biobank resource, run at deCODE genetics. Results for FN (femoral neck) and LS (lumbar spine) BMD are derived from our unpublished meta-analysis of BMD in Iceland, UK Biobank, and the publicly available GEFOS consortium (Zheng et al, Nature, 2015).

## Supplementary Table 12. Significant association of EHOA polygenic risk score with phenotypes in UK biobank

| Phenotype | P value | Effect /OR | N cases | N controls | N overall | nR2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Grip strength (mean, age, sex, height adj.) | $6.0 \mathrm{E}-41$ | -0.022 |  | 427,745 | 0.00048 |  |
| Other arthrosis (ICD10:M19) | $4.8 \mathrm{E}-29$ | 1.05 | 73,440 | 357,607 | 0.00048 |  |
| Any OA | $2.1 \mathrm{E}-19$ | 1.04 | 103,173 | 327,874 | 0.00029 |  |
| Polyarthrosis (ICD10:M15) | $4.9 \mathrm{E}-17$ | 1.08 | 12,326 | 418,612 | 0.00072 |  |
| Hand OA | $4.7 \mathrm{E}-16$ | 1.15 | 3,416 | 427,631 | 0.00175 |  |
| Pain due to OA | $7.5 \mathrm{E}-14$ | 1.05 | 44,262 | 98,258 | 0.00053 |  |
| Pain in hands in last three months | $2.8 \mathrm{E}-13$ | 1.11 | 5,766 | 64,039 | 0.00174 |  |
| Heberden nodes with arthropathy | $1.1 \mathrm{E}-12$ | 1.30 | 758 | 428,428 | 0.00464 |  |
| Finger OA | $1.3 \mathrm{E}-13$ | 1.29 | 834 | 428,352 | 0.00407 |  |
| Other arthritis (ICD10:M13) | $6.3 \mathrm{E}-10$ | 1.04 | 33,303 | 397,744 | 0.00021 |  |
| Operation of joint of finger (OPCS:Z83) | $1.3 \mathrm{E}-09$ | 1.10 | 4,289 | 426,758 | 0.00082 |  |

A PRS for EHOA was generated from the Icelandic, the Dutch, the US and Spanish EHOA datasets. The MHC region was excluded from the EHOA PRS. The results are shown from a scan of diverse phenotypes derived from the UK Biobank. Significance was set as $P<1.0 \times 10^{-5}$, accounting for 5,000 main phenotypes. nR2 is the Nagelkerke's correlation coefficient.

Supplementary Table 13. Association of finger, hand, thumb, knee, hip, spine, and all OA GWS variants from the GO consortium in EHOA meta-analysis

| OA phenotype | Variant | EA | NEA | EA_freq\% | GO_locus_number | Associated GWS OA phenotypes | GO consortium results |  | EHOA_meta |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | OR | P | OR | P |
| FingerOA | rs7294636 | A | G | 37.3 | 21 | finger | 1.16 | 3.0E-16 | 1.36 | 6.8E-13 |
| FingerOA | rs9396861 | A | C | 61.0 | 77 | hand, finger | 1.13 | $9.3 \mathrm{E}-11$ | 1.23 | 3.2E-06 |
| FingerOA | rs11588154 | T | G | 16.6 | 7 | finger | 0.83 | 6.1E-10 | 0.86 | 0.01 |
| FingerOA | rs8031133 | T | G | 54.5 | 30 | hand, finger, thumb, knee | 1.11 | 1.1E-09 | 1.40 | 2.4E-14 |
| FingerOA | rs11550348 | A | G | 11.0 | 45 | hand, finger | 0.84 | 6.2E-09 | 0.76 | 1.9E-04 |
| HandOA | rs11071366 | A | T | 61.4 | 30 | hand, finger, thumb, knee | 0.90 | 4.9E-17 | 0.71 | 7.1E-15 |
| HandOA | rs3993110 | A | c | 60.8 | 10 | hand | 1.09 | 3.8E-11 | 1.14 | 0.0028 |
| HandOA | rs3771498 | T | C | 52.1 | 52 | hand, thumb, hip, all | 0.92 | $6.8 \mathrm{E}-11$ | 0.86 | 2.8E-04 |
| HandOA | rs8112559 | C | G | 88.6 | 45 | hand, finger | 1.13 | 7.3E-11 | 1.32 | 1.8E-04 |
| HandOA | rs10062749 | T | G | 26.9 | 73 | hand, thumb | 1.08 | 2.0E-09 | 1.15 | 0.0029 |
| HandOA | rs7748189 | A | G | 73.2 | 77 | hand, finger | 1.08 | 6.1E-09 | 1.24 | 1.2E-05 |
| HandOA | rs1560080 | A | G | 82.5 | 71 | hand | 0.91 | 9.6E-09 | 0.84 | 0.0011 |
| ThumbOA | rs4238326 | T | C | 60.7 | 30 | hand, finger, thumb, knee | 0.89 | 7.3E-12 | 0.71 | 7.4E-15 |
| ThumbOA | rs2862851 | T | C | 46.5 | 52 | hand, thumb, hip, all | 1.11 | 3.2E-10 | 1.16 | 4.4E-04 |
| ThumbOA | rs11588850 | A | G | 82.0 | 6 | thumb | 0.87 | 3.5E-10 | 1.06 | 0.34 |
| ThumboA | rs10062749 | T | G | 26.9 | 73 | hand, thumb | 1.11 | 1.3E-08 | 1.15 | 0.0029 |
| SpineOA | rs201194999 | T | C | 30.1 | 69 | all,spine | 0.85 | $1.2 \mathrm{E}-08$ | 0.57 | 0.27 |
| KneeOA | rs143384 | A | G | 59.1 | 53 | knee,all | 1.07 | 1.0E-23 | 1.08 | 0.09 |
| KneeOA | rs9940278 | T | C | 43.5 | 35 | knee,hip | 1.06 | 3.2E-16 | 0.97 | 0.56 |
| KneeOA | rs34195470 | A | G | 44.5 | 36 | knee | 0.95 | 3.1E-13 | 0.99 | 0.85 |
| KneeOA | rs4548913 | A | G | 62.8 | 37 | knee, all | 0.95 | 3.2E-12 | 0.92 | 0.04 |
| KneeOA | rs72760655 | A | C | 33.1 | 92 | knee,all | 1.05 | 7.3E-11 | 1.05 | 0.29 |
| KneeOA | rs7581446 | T | C | 48.3 | 50 | knee | 0.95 | 1.7E-10 | 0.98 | 0.62 |
| KneeOA | rs753350451 | D | 1 | 20.2 | 19 | knee | 0.93 | 3.4E-10 | 0.98 | 0.77 |
| KneeOA | rs58973023 | A | T | 48.9 | 27 | knee | 1.06 | 4.7E-10 | 1.04 | 0.41 |
| KneeOA | rs4775006 | A | C | 41.6 | 30 | hand, finger, thumb, knee | 1.05 | 8.5E-10 | 0.69 | 3.0E-16 |
| KneeOA | rs4380013 | A | G | 18.8 | 29 | knee | 1.06 | 8.7E-10 | 1.05 | 0.36 |
| KneeOA | rs1426371 | A | G | 27.1 | 18 | knee | 0.95 | 8.9E-10 | 1.03 | 0.51 |
| KneeOA | rs66906321 | T | C | 17.5 | 51 | knee | 0.95 | 1.7E-09 | 0.97 | 0.64 |
| KneeOA | rs7967762 | T | C | 15.6 | 24 | knee | 1.06 | 2.1E-09 | 1.08 | 0.19 |
| KneeOA | rs72979233 | A | G | 75.3 | 15 | knee | 0.95 | 2.5E-09 | 0.92 | 0.07 |
| KneeOA | rs2163832 | T | C | 32.1 | 43 | knee,all | 1.05 | 2.7E-09 | 1.23 | 6.2E-06 |
| KneeOA | rs11705555 | A | C | 76.4 | 56 | knee | 1.05 | 3.0E-09 | 1.00 | 0.97 |
| KneeOA | rs2791549 | A | C | 29.6 | 5 | knee, hip | 1.05 | 3.1E-09 | 1.05 | 0.26 |
| KneeOA | rs10842226 | A | G | 42.0 | 22 | knee | 1.05 | 3.6E-09 | 0.91 | 0.03 |
| KneeOA | rs10974438 | A | C | 64.6 | 99 | knee | 1.04 | 4.9E-09 | 1.07 | 0.14 |
| KneeOA | rs6500609 | C | G | 11.0 | 34 | knee | 0.94 | 5.2E-09 | 0.97 | 0.67 |
| KneeOA | rs10038860 | A | G | 27.4 | 73 | knee | 1.05 | 5.6E-09 | 1.16 | 0.0013 |
| KneeOA | rs12914479 | C | G | 66.0 | 33 | knee | 1.04 | 7.1E-09 | 1.07 | 0.13 |
| KneeOA | rs2066928 | A | G | 48.3 | 75 | knee | 0.96 | 1.2E-08 | 0.97 | 0.47 |
| KneeOA | rs7680647 | T | C | 63.1 | 68 | knee,hip,all | 0.96 | 1.2E-08 | 0.85 | 3.2E-04 |
| HipOA | rs10843013 | A | C | 78.4 | 23 | hip | 0.90 | 2.9E-24 | 0.96 | 0.46 |
| HipOA | rs12209223 | A | C | 11.1 | 83 | hip | 1.15 | 1.9E-22 | 1.16 | 0.03 |
| HipOA | rs11164653 | T | C | 41.3 | 1 | hip,all | 0.92 | 2.8E-18 | 1.01 | 0.84 |
| HipOA | rs12908498 | c | G | 53.8 | 32 | hip | 1.08 | $1.9 \mathrm{E}-16$ | 1.06 | 0.18 |
| HipOA | rs2416564 | T | C | 59.8 | 95 | hip | 0.93 | 1.0E-15 | 1.06 | 0.18 |
| HipOA | rs765002298 | D | 1 | 19.7 | 90 | hip | 0.90 | 1.8E-15 | 1.03 | 0.58 |
| HipOA | rs4252548 | T | C | 2.4 | 46 | hip | 1.25 | 2.2E-15 | 1.36 | 0.03 |
| HipOA | rs1046934 | A | C | 64.9 | 4 | hip | 1.07 | 3.8E-14 | 0.99 | 0.80 |
| HipOA | rs79895530 | T | C | 13.0 | 91 | hip | 0.90 | 7.0E-14 | 1.05 | 0.42 |
| HipOA | rs2268023 | A | T | 41.1 | 63 | hip | 1.07 | 1.6E-13 | 0.95 | 0.21 |
| HipOA | rs1913707 | A | G | 60.5 | 66 | hip,all | 1.07 | $1.8 \mathrm{E}-13$ | 1.06 | 0.16 |
| HipOA | rs2862851 | T | C | 46.5 | 52 | hand, thumb, hip, all | 1.07 | 3.9E-13 | 1.16 | 4.4E-04 |
| HipOA | rs9475400 | T | C | 9.8 | 82 | hip | 1.11 | 8.0E-13 | 1.04 | 0.56 |
| HipOA | rs111844273 | A | G | 2.1 | 89 | hip | 1.26 | 1.0E-12 | 1.10 | 0.49 |
| HipOA | rs6908606 | A | G | 71.1 | 81 | hip | 0.93 | 3.9E-12 | 0.91 | 0.06 |
| HipOA | rs2605098 | A | G | 33.2 | 5 | hip | 1.07 | 6.8E-12 | 1.09 | 0.05 |
| HipOA | rs1330349 | C | G | 58.9 | 93 | hip | 1.06 | $6.9 \mathrm{E}-12$ | 1.02 | 0.59 |
| HipOA | rs4411121 | T | C | 31.4 | 2 | hip | 1.07 | 2.2E-11 | 1.06 | 0.22 |
| HipOA | rs12377624 | C | G | 36.2 | 97 | hip | 0.94 | 4.6E-11 | 1.02 | 0.66 |
| HipOA | rs143083812 | T | C | 0.11 | 86 | hip | 2.90 | 8.2E-11 | 3.48 | 0.0087 |
| HipOA | rs1401796 | A | C | 51.3 | 39 | hip,all | 0.94 | 1.4E-10 | 0.97 | 0.52 |
| HipOA | rs746239049 | D | 1 | 20.5 | 31 | hip | 0.92 | 3.3E-10 | 0.89 | 0.05 |
| HipOA | rs12160491 | A | G | 71.1 | 57 | hip | 0.94 | $4.4 \mathrm{E}-10$ | 1.01 | 0.81 |
| HipOA | rs67924081 | A | G | 73.9 | 13 | hip | 1.07 | 7.8E-10 | 1.02 | 0.71 |
| HipOA | rs10831477 | T | G | 81.1 | 17 | hip,all | 1.07 | 1.2E-09 | 1.01 | 0.81 |
| HipOA | rs9835230 | A | G | 24.3 | 61 | hip | 1.07 | 1.3E-09 | 1.11 | 0.04 |
| HipOA | rs2521348 | T | C | 38.7 | 41 | hip | 1.06 | $1.6 \mathrm{E}-09$ | 0.94 | 0.14 |
| HipOA | rs34560402 | T | C | 6.5 | 14 | hip | 0.89 | $1.6 \mathrm{E}-09$ | 0.96 | 0.63 |
| HipOA | rs9940278 | T | C | 43.5 | 35 | knee,hip | 1.06 | $1.8 \mathrm{E}-09$ | 0.97 | 0.56 |
| HipOA | rs3740129 | A | G | 45.9 | 8 | hip | 1.06 | 1.8E-09 | 1.05 | 0.25 |
| HipOA | rs79056043 | A | G | 93.7 | 25 | hip | 0.89 | $2.0 \mathrm{E}-09$ | 0.84 | 0.05 |
| HipOA | rs79220007 | T | C | 92.7 | 78 | hip | 0.90 | 2.2E-09 | 1.01 | 0.91 |


| HipOA | rs798756 | T | C | 19.4 | 68 | knee,hip,all | 0.93 | 2.2E-09 | 0.85 | 0.0044 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HipOA | rs4073717 | T | G | 20.1 | 74 | hip | 0.94 | 2.5E-09 | 0.90 | 0.05 |
| HipOA | rs17677724 | T | C | 16.1 | 72 | hip,all | 1.07 | 3.5E-09 | 1.12 | 0.05 |
| HipOA | rs1809889 | T | C | 28.0 | 20 | hip | 1.06 | 3.6E-09 | 1.07 | 0.17 |
| HipOA | rs10983775 | T | C | 54.2 | 96 | hip | 0.95 | 4.7E-09 | 0.99 | 0.80 |
| HipOA | rs66989638 | A | G | 12.7 | 48 | hip | 1.08 | $4.8 \mathrm{E}-09$ | 1.00 | 0.97 |
| HipOA | rs7862601 | A | G | 62.4 | 94 | hip | 0.94 | 6.2E-09 | 0.94 | 0.15 |
| HipOA | rs7222178 | A | T | 19.5 | 40 | hip | 1.07 | 7.4E-09 | 1.01 | 0.82 |
| HipOA | rs10940168 | A | G | 39.4 | 76 | hip | 0.95 | 7.7E-09 | 1.01 | 0.76 |
| HipOA | rs6855246 | A | G | 92.8 | 64 | hip,all | 0.90 | 7.9E-09 | 1.08 | 0.53 |
| HipOA | rs10465114 | A | G | 22.0 | 98 | hip | 1.06 | 9.0E-09 | 1.01 | 0.89 |
| Alloa | rs13107325 | T | C | 7.1 | 64 | hip,all | 1.08 | 3.2E-17 | 0.94 | 0.65 |
| AlloA | rs3771501 | A | G | 46.8 | 52 | hand, thumb, hip, all | 1.04 | 4.0E-15 | 1.16 | 6.4E-04 |
| AlloA | rs1913707 | A | G | 60.5 | 66 | hip,all | 1.03 | 1.4E-12 | 1.06 | 0.16 |
| AlloA | rs2425061 | A | G | 62.8 | 53 | knee,all | 1.03 | 2.1E-12 | 0.94 | 0.14 |
| Alloa | rs216175 | A | C | 82.8 | 37 | all | 1.04 | 2.7E-12 | 1.09 | 0.11 |
| Alloa | rs2622873 | T | C | 88.0 | 1 | hip,all | 1.05 | 4.2E-11 | 1.03 | 0.66 |
| AlloA | rs10405617 | A | G | 31.9 | 43 | knee,all | 1.03 | 9.3E-11 | 1.22 | 1.5E-05 |
| Alloa | rs12901372 | C | G | 52.7 | 32 | all | 1.03 | 1.0E-10 | 1.07 | 0.10 |
| Alloa | rs11731421 | A | G | 34.6 | 68 | knee,hip,all | 1.03 | $1.9 \mathrm{E}-10$ | 1.19 | 1.0E-04 |
| Alloa | rs75621460 | A | G | 2.6 | 44 | all | 1.10 | 1.1E-09 | 1.06 | 0.65 |
| Alloa | rs4979341 | T | C | 27.5 | 92 | knee,all | 1.03 | 1.4E-09 | 1.04 | 0.41 |
| AlloA | rs12667224 | A | G | 52.0 | 85 | all | 0.97 | 1.7E-09 | 0.96 | 0.30 |
| Alloa | rs62242105 | A | G | 33.1 | 62 | hip | 0.97 | $2.9 \mathrm{E}-09$ | 1.01 | 0.79 |
| AlloA | rs201194999 | T | C | 30.1 | 69 | all,spine | 0.88 | 3.1E-09 | 0.57 | 0.27 |
| AlloA | rs62182810 | A | G | 54.4 | 49 | all | 1.03 | 3.8E-09 | 1.07 | 0.15 |
| Alloa | rs11729628 | T | G | 23.9 | 65 | all | 0.97 | 4.7E-09 | 0.91 | 0.05 |
| AlloA | rs1401795 | A | G | 50.0 | 39 | all | 1.03 | 6.2E-09 | 1.03 | 0.47 |
| Alloa | rs10831476 | A | C | 81.1 | 17 | hip,all | 1.03 | 7.8E-09 | 1.01 | 0.82 |
| AlloA | rs17677555 | C | G | 25.6 | 72 | hip,all | 1.03 | 1.1E-08 | 1.08 | 0.13 |

The Genetics of Osteoarthritis (GO) consortium data is from Boer et al, Cell, 2021. OR (odds ratio) and P values and ORs are shown for the respective osteoarthritis (OA) phenotypes in the GO consortium data. The OA phenotypes that are significantly associated with the respective signal in GO are listed under the column "Associated GWS OA phenotypes" (often represented by a different, but highly correlated, variant).

## SUPPLEMENTARY MATERIAL: Meta-analysis of erosive hand osteoarthritis

SUPPLEMENTARY METHODS ..... 2
Study populations. ..... 2
Iceland ..... 2
The Netherlands ..... 2
United Kingdom ..... 3
United States ..... 3
Spain ..... 4
Genotyping and imputation ..... 4
Ancestry analysis ..... 5
Association analysis ..... 5
Polygenic risk score (PRS) and phenotype correlation analysis ..... 6
Additional phenotypes ..... 7
Functional annotation of sequence variants ..... 8
Enrichment of association signals in functional annotations ..... 8
Co-localisation: ..... 9
Zebrafish experiments. ..... 10
Zebrafish ..... 10
Bmp6 Mutant Zebrafish Generation ..... 10
Genomic DNA extraction, High Resolution Melt Analysis (HRMA), and PCR genotyping ..... 10
Cartilage and Bone Staining ..... 11
References: ..... 11
SUPPLEMENTARY FIGURES ..... 14
Supplementary Figure 1. Generation of zebrafish lacking bmp6 gene function ..... 14
Supplementary Figure 2. Protein levels in plasma according to EHOA disease status ..... 15
Supplementary Figure 3. Loss of bmp6 in F0 zebrafish larvae causes erosive-like phenotypes in the vertebral precursors similar to germline mutants. ..... 16
Supplementary Figure 4. Correlation between effects of EHOA variants on EHOA and hand grip strength ..... 17
Supplementary Figure 5. Correlation of OR's between EHOA and other OA ..... 18

## SUPPLEMENTARY METHODS

## Study populations

Iceland: EHOA (918 cases) was diagnosed from conventional dorsopalmar radiographs taken of individuals who had been diagnosed with hand OA and compared to 109,249 controls. The proximal and distal interphalangeal joints were scored according to Verbruggen-Veys (VV) (1) and patients with at least 1 joint in the E phase (erosive) or R phase (remodelled) were classified as having EHOA. The number of erosive joints per individual was recorded. All radiographs were scored by the same clinician, a co-author of this paper (HJ). Individuals diagnosed with rheumatoid arthritis (RA) were excluded.

Any type of OA was excluded from the controls (ICD10 codes: M15, M16, M17, M18, M19, or M47, ICD9 code 715, and subcodes). The information was derived from Landspitali University Hospital electronic health records, from The Directorate of Health electronic health records, clinicians, and from a national Icelandic hip or knee arthroplasty registry.

All participants who donated samples gave informed consent and the National Bioethics Committee of Iceland approved the study (VSN_14-148, VSN_14-015v8) which was conducted in agreement with conditions issued by the Data Protection Authority of Iceland.

The Netherlands: The Dutch samples were derived from two studies: the patients from the Hand OSTeoArthritis in Secondary care (HOSTAS) study (2) , and the controls from the Nijmegen Biomedical Study study (NBS) (3). EHOA cases were scored according to Verbruggen-Veys (VV) (1) and defined as EHOA cases, same as in Iceland. Hostas is an observational cohort with consecutive patients with hand OA diagnosed at a rheumatology outpatient clinic by their treating rheumatologist. Patients with secondary OA or inflammatory joint diseases, such as rheumatoid arthritis, or other conditions that could explain their hand symptoms were excluded. Dorsovolar hand radiographs were scored by one reader, with good reliability (for details see ref Damman et al (2). Both cases $(N=139)$ and controls $(N=5,102)$ were genotyped on the same Illumina chip type. Individuals from the NBS were invited to participate in a study on gene-environment interactions in multifactorial diseases. The details of this study were reported previously (3). The study protocol of the Nijmegen Biomedical Study was approved by
the Institutional Review Board of the Radboud University Medical Center and all study subjects gave written informed consent. All individuals included in this study were genetically determined to be of European descent.

United Kingdom: The UK Biobank resource (http://www.ukbiobank.ac.uk) includes data from 500,000 volunteer participants who were recruited between the age of 40-69 years in 20062010 across the United Kingdom. All individuals in the current study (63 EHOA cases/430,875 controls) were of White British descent. The EHOA included those with the ICD10 code M15.4. All participants gave informed consent and UK Biobank's scientific protocol and operational procedures were reviewed and approved by the North West Research Ethics Committee. This research has been conducted using the UK Biobank Resource under Application Number 23359.

United States: The Utah EHOA cases $(\mathrm{N}=145)$ have been previously described in Kazmers et al (4). Individuals with the ICD-10 code M15.4 in the Utah Population Database between October 1, 2015 and December 31, 2019 were included, excluding those with rheumatoid arthritis (ICD-9 714.0, ICD-10 M05), other rheumatoid arthritis subtypes (ICD-9 714.2, ICD-10 M06), or juvenile rheumatoid arthritis (ICD-9 714.3, ICD-10 M08). Manual chart review was performed to confirm the EHOA diagnosis. Additional individuals were identified by querying those enrolled in the Intermountain Healthcare HerediGene: Population Study using the ICD-10 code M15.4 and excluding individuals with rheumatoid arthritis. Subjects (male and female, $\geq 18$ years of age, and a United States resident) visiting an Intermountain Healthcare facility or event were recruited for study participation (Utah, USA). Subjects were informed of the study protocol and procedures prior to providing consent. A consent waiver was granted for the use of residual blood that would otherwise be discarded following a standard of care blood draw performed before a subject expired. Control subjects ( $N=5,308$ ) were from the Intermountain Healthcare study, excluding those with any OA. All individuals included in this study were genetically determined to be of European descent. Study procedures were in accordance with the ethical standards of the responsible institution and approved by the Institutional Review Board at the University of Utah (IRB\#: 79442, Salt Lake City, UT USA) and Intermountain Healthcare (IRB\#: 1051071, Salt Lake City, UT USA).

Spain: The Spanish samples are all from A Coruña. The cases ( $N=218$ ) were derived from the PROCOAC (PROspective COhort of A Coruña ) cohort (5), and the controls ( $\mathrm{N}=164$ ) were from other projects at A Coruña University Hospital who had not been diagnosed with hand OA on radiographs. EHOA cases were scored according to Verbruggen-Veys (VV) (1). All individuals included in this study were genetically determined to be of European descent.

We applied ancestry analysis to the UK, US, Spanish and Dutch cohorts and excluded samples that were identified as ethnic outliers (see below). For the remaining samples we constructed genetic principal components that were used as covariates in the association analysis to adjust for remaining population substructure. Related individuals are included in the analysis and any inflation this leads to in the test statistics is adjusted for using a genomic control adjustment.

Genotyping and imputation: The Icelandic samples, the Dutch, the US, and the Spanish samples, were genotyped by deCODE genetics, using Illumina HumanHap and HumanOmni genotyping chips for the Icelandic samples, HumanOmni-1 Quad chip for the Dutch samples, and Illumina GSA chip for the Spanish and US samples. For each sample set, variants were excluded if they (i) had<98\% yield, (ii) had<1\% MAF, (iii) failed Hardy-Weinberg test ( $P<1 \times 10-6$ ) or (iv) showed significant ( $P<1 \times 10-6$ ) difference between genotype batches. Samples with $<96 \%$ yield were excluded. The UK Biobank genotyping was performed using a custommade Affimetrix chip, UK BiLEVE Axiom (6), in the first 50,000 participants, and with Affimetrix UK Biobank Axiom array in the remaining participants (7).

In the Icelandic samples, variants were derived from whole genome sequencing (WGS) 49,962 Icelanders using GAllx, HiSeq, HiSeqX, and NovaSeq Illumina technology (8)' (9), the genotypes of SNPs and indels called jointly by Graphtyper (10), haplotyped long range phased (11) and high-quality sequence variants imputed into all samples. All variants tested had imputation information over 0.8.

The samples from the Netherlands and Spain, and the erosive samples from the US, phased using SHAPEIT (12) and used to impute un-genotyped variants using IMPUTE2 (13). The samples were imputed using the 1000 Genomes Phase 3 reference data (October 2014 release) that
includes phased genotypes for about 80 million variants and for 2,504 individuals of various ethnicities (14).

The variants in the US hand, finger, and thumb samples were derived from sequencing 9,268 individuals of non-Icelandic northern European descent, 245 million variants in total, long range phased using SHAPEIT4 (15) and imputed into the US chip data.

The variants imputed into the UK Biobank samples were derived from WGS of 131,958 UK individuals, performed jointly by deCODE genetics and the Welcome Trust Sanger Institute (16) where over 245 million high-quality sequence variants and indels were identified using Graphtyper (10). Quality-controlled chip genotype data were phased using SHAPEIT 4 (15). A phased haplotype reference panel was prepared from the sequence variants using the longrange phased chip-genotyped samples using inhouse tools and methods described previously (8, 9) and imputed into the phases genotype data.

Ancestry analysis: For UK Biobank, we used a British-Irish ancestry subset defined previously (16). It was defined by applying uniform manifold approximation and projection (UMAP) dimension reduction of 40 genetic principal components provided by the UK Biobank and ADMIXTURE analysis supervised on five reference populations and self-reported ethnicity information and defined three cohorts in the UK Biobank data; British-Irish, South-Asian and African ancestry. For the current study we used only data from the British-Irish ancestry group ( $\mathrm{N}=431,805$ ). For this group 20 principal components were calculated as and included in the association analysis to adjust for remaining population structure.

To study the population structure and the ancestry of samples in the Dutch, Spanish and US cohorts we used the ADMIXTURE (v 1.2) (17) and EIGENSOFT (v 6.0.1) (18) software. Samples were excluded if they were identified as ethnic outliers in the respective cohort, and to adjust for remaining population substructure ten principal components were included as covariates in the subsequent association analysis.

Association analysis: Logistic regression was used to test for association between variants and disease, assuming a multiplicative model, treating disease status as the response and expected genotype counts from imputation as covariates. Testing was performed using the likelihood
ratio statistic. For the Icelandic and UK cohorts this was done using software developed at deCODE genetics (8). For Iceland we included county of birth, age, age squared, sex and an indicator function for the overlap of the lifetime of the individual with the time span of phenotype collection as covariates to account for differences between cases and controls. We used county of birth as a proxy covariate for the first principal components (PCs) in our analysis because county of birth has been shown to be in concordance with the first PC in Iceland (19).

The UK association was adjusted for sex, age and the 20 PCs.

The US, Dutch and Spanish associations were analysed using the SNPTEST (v.2.5) software (20), including age, sex and 20 PC's as covariates.

We used LD score regression (21) to account for distribution inflation due to cryptic relatedness and population stratification in each of the cohorts respectively.

For genome-wide significance thresholds we used the weighted Holm-Bonferroni method to allocate familywise error rate of 0.05 equally between five annotation-based classes of sequence variants (22); $P \leq 2.4 \times 10^{-7}$ for high-impact variants (including stop-gained and loss, frameshift, splice acceptor or donor and initiator codon variants), $P \leq 4.9 \times 10^{-8}$ for missense, splice-region variants and in-frame-indels, $P \leq 4.4 \times 10^{-9}$ for low-impact variants (including synonymous, $3^{\prime}$ and $5^{\prime}$ UTR, and upstream and downstream variants), $P \leq 2.2 \times 10^{-9}$ for deep intronic and intergenic variants in DNase I hypersensitivity sites (DHS), and $P \leq 7.4 \times 10^{-10}$ for other non-DHS deep intronic and intergenic variants.

Polygenic risk score (PRS) and phenotype correlation analysis: We used PRS analysis based on a EHOA meta-analysis of Icelandic, Dutch, Spanish and US GWASs to investigate its correlation with about 5,000 quantitative and case/control traits in the UK Biobank dataset. The PRSs was calculated using genotypes for about 600,000 autosomal markers included on the Illumina SNP chips to avoid uncertainty due to imputation quality (23). We estimated linkage disequilibrium (LD) between markers using 14,938 phased Icelandic samples and used this LD information to calculate adjusted effect estimates using LDpred (24). The adjusted effects were used as weights to generate the weighted PRS for testing in the UK. We created several PRSs assuming different fractions of causal markers (the P parameter in LDpred). Subsequently, we selected the PRS that
was the most predictive of erosive hand OA in UK Biobank data to test for correlation with other traits. The model selected corresponds to assuming that $0.3 \%$ of the markers are causal, and this explains $0.4 \%(P=0.02)$ of the variance in the correlation with erosive hand $O A$ based on an Nagelkerke pseudo $R^{2}$ estimate. The correlation between the outcome phenotypes and the PRS was done in the same way as for the correlation with genetic variants and using the same software developed at deCODE genetics. For case/control outcome we used logistic regression to test for association between variants and disease treating disease status as the response and the PRS as covariate. Testing was performed using the likelihood ratio statistic and the analysis was adjusted for sex, age and 20 PC's. For quantitative outcome traits we used logistic regression with the PRS as covariate. Prior to association analysis of quantitative traits, measurements were adjusted for sex, age, year of birth, measurement site and population structure. Average of multiple measurements for an individual was used, and the measurements were normalized to a standard normal distribution using quantile normalization. In both cases likelihood ratio test was used to calculate the $P$-values, and the $P$ values were adjusted for distribution inflation due to cryptic relatedness and population stratification using LD score regression and association results for about 1.2 million unlinked genetic variants. We have now added this description to the methods section. Accounting for 5,000 main phenotypes in the PRS scan, which included all main disease-categories and measured quantitative traits, we set the significance threshold at $P<1.0 \times 10^{-5}$.

Additional phenotypes: The quantitative phenotypes in UK Biobank were adjusted for covariates for each sex separately and only included individuals of a British-Irish ancestry. For grip strength we used the mean of right and left measures ( $\mathrm{N}_{\text {grip_strength }}=427,745$ ), adjusted for age and height, and the urate ( N urate $=411,640$ ) and BMD measures were adjusted for age and BMI. We downloaded summary statistics from a meta-analysis of lumbar spine (LS) BMD and femoral-neck (FN) BMD from the GEFOS consortium that did not include Icelandic data (25), and meta-analysed with the summary statistics from Iceland and UK Biobank ( $\mathrm{NLSSBMD}=106,228, \mathrm{~N}_{\text {FN }}$ вмд $=107,310$ ). eBMD was estimated from heel ultrasound measures as described in Morris et al (26) ( $\mathrm{N}_{\text {eвмд }}=398,823$ ). Osteoporosis was defined by ICD10 codes M80 and M81 ( $\mathrm{N}_{\text {osteoporosis }}=$ 6,626).

For the genetic correlation analysis, we used meta-analyses of rheumatoid arthritis (RA) overall $\left(N_{R A \_ \text {_overall }}=27,700\right)$, sero-positive $R A\left(N_{R A}\right.$ sero-positive $\left.=16,273\right)$, sero-negative $R A\left(N_{R A}\right.$ sero-negative $=$ 7,446 ) in North-western European populations (27), excluding the Icelandic data, since Iceland had the largest EHOA sample-set, and gout from UK Biobank, captured both by ICD10 codes M10.0 and M10.9 and by gout-specific drugs (allopurinol, febuxostat, or probenecid) $\left(N_{\text {gout }}=15,806\right)$.

Functional annotation of sequence variants: We downloaded the cell type agnostic definition of candidate cis-regulatory elements (cCRE) from the ENCODE project (28) (screen.encodeproject.org) and tissue specific regulatory elements from Meuleman et al (zenodo.org/record/3838751\#.YYUyjhrP2UI) (29). We then determined whether the lead sequence variant or any of their correlated variants ( $r^{2}>0.80$ ) are located within cCRE or tissue specific regulatory regions. We looked for association signals in enhancer elements defined in EpiMap (compbio.mit.edu/epimap) to then see if those same enhancers are predicted to influence nearby genes based on per-sample analysis datasets:
personal.broadinstitute.org/cboix/epimap/links/links_corr_only.

Enrichment of association signals in functional annotations: We determined how many of the four association signals identified for EHOA intersect with one of sixteen tissue specific regulatory regions defined in Meuleman et al. (29). Here, we define an association signal as a lead sequence variant along with other sequence variants found in strong correlation (linkage disequilibrium; LD) to the lead variant; $r^{2}>0.80$. We refer to this intersection as the „observed intersection". To find the „expected intersection", we made use of association signals from the GWAS catalogue (see details in next paraphrase). We binned the signals according to LD class, i.e., the number of correlated variants for each lead association signal in the GWAS catalogue. We then selected, at random, one „lead variant" from the GWAS catalogue for each of the four EHOA association loci, but ensure that they are selected from the same LD class bins as the observed association signals are found in. LD class bins: 1-10, 11-20, 21-50, 51-100, 101-200, 201-Inf. We then obtain the fraction of overlap to the tissue specific regulatory regions for these four randomly selected and LD class matched loci. This is the „expected intersection", and, we record whether or not the expected intersection is larger or equal to the observed
intersection. We then repeat this process 5,000 times to obtain the mean and confidence intervals for the expected intersection and, importantly, the number of times we see the expected intersections to be higher than or equal to the observed intersection gives the P -value. The enrichment estimates are obtained by computing: observed intersection / mean of expected intersections.

We compiled a robust set of association signals from the NHGRI-EBI catalogue of GWAS association signals; downloaded on 4-AUG-2021 (GWAS catalogue v1.00; www.ebi.ac.uk/gwas). For each disease (or other traits) we selected associations where P -value $<1 \mathrm{e}-9$ and, for each chromosome, we ordered the associations according to P -value to then select the strongest association on each chromosome. We then select the "second strongest" association on the same chromosome only if it is located more than 1 Mb away from the strongest association. This same process was then continued down the list of remaining associations; only those located more than 1 Mb away from the stronger associations were selected. Further, as our enrichment algorithm takes LD into account, which we compute in 28,075 whole genome sequenced individuals from the Icelandic population, we selected GWAS's carried out in individuals of European descent. Finally, we deleted 240 trait association signals as the lead variant of these signals was somewhat correlated $\left(r^{2}>0.20\right)$ to a stronger lead variant on that same chromosome for the same disease/trait. This resulted in 42.669 association signals in 1.875 diseases or other human traits. It is this large set of trait associations that enables us to estimate the expected fraction of association signals intersecting with a given genome annotation.

Co-localisation: To test for co-localization of the EHOA signals with signals in other traits we used the COLOC software package implemented in R (30). Using summary statistics for traits A and B, i.e., effects and P-values, we calculated Bayes factors for each of the variants in the associated region tor the two traits and used COLOC to calculate posterior probability for two hypotheses: (1) that the association with trait A and trait B are independent signals (PP3) and (2) that the association with trait A and trait B are due to a shared signal (PP4).

## Zebrafish experiments:

Zebrafish: Danio rerio were maintained in accordance with approved institutional protocols at the University of Utah. Adult zebrafish were maintained under standard conditions and kept on a light-dark cycle of 14 hours in light and 10 hours in dark at $27^{\circ} \mathrm{C}$. The Tu strain was used in all experiments.

Bmp6 Mutant Zebrafish Generation: Mutations were induced with CRISPR/Cas9 reagents as described in Hoshijima et al (31). gRNA target sequences are as follows: bmp6 gRNA1 (in exon 5) - TTTCAGAGAATTGAGCTGGC(AGG) and bmp6_gRNA2 (in exon 7) AGTAGAGCACGGAGATTGCG(TGG) (Figure S1a). The PAM sequence is indicated in parentheses. Target-specific Alt- ${ }^{\circledR}$ crRNA and common Alt-R ${ }^{\circledR}$ tracrRNA were synthesized by IDT and dissolved in duplex buffer (IDT) as a $100 \mu \mathrm{M}$ stock solution. Equal volumes of the $\mathrm{Alt}-\mathrm{R}^{\circledR}$ crRNA and Alt- $\mathrm{R}^{\circledR}$ tracrRNA stock solutions were mixed together and annealed in a PCR machine using the following settings: $95^{\circ} \mathrm{C}, 5 \mathrm{~min}$; cool at $0.1^{\circ} \mathrm{C} / \mathrm{sec}$ to $25^{\circ} \mathrm{C} ; 25^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 4^{\circ} \mathrm{C}$. Cas9 protein (Alt$\mathrm{R}^{\circledR}$ S.p. Cas9 nuclease, V3, IDT, dissolved in 20mM HEPES-NaOH (pH 7.5), 350mM KCl, 20\% glycerol) and crRNA:tracrRNA duplex mixed to generate a $5 \mu \mathrm{M}$ gRNA:Cas9 RNP complex (referred to as RNPs). Prior to microinjection, the RNP complex solution was incubated at $37^{\circ} \mathrm{C}$, 5 min and then placed at room temperature. Approximately one nanoliter of $5 \mu \mathrm{M}$ RNP complex was injected into the cytoplasm of one-cell stage zebrafish embryos. To remove $b m p 6$ gene function in F0 embryos, a mixture of gRNA:Cas9 RNPs targeting exon 5 and exon 7 were injected into the cytoplasm of one-cell stage embryos. To generate zebrafish lacking bmp6 gene function in the germline, RNP injected embryos were raised to adulthood and individual F1 embryos carrying deletions at the bmp6 locus were identified using the primers below. We identified one allele, z52-a 1,749 bp deletion, which stably transmitted through the germline (Figure S1c).

Genomic DNA extraction, High Resolution Melt Analysis (HRMA), and PCR genotyping: For HRMA analysis and embryos genotyping, genomic DNA was extracted from individual embryos at 24 hours post fertilization (hpf). Dechorionated embryos were incubated in 30 ul 50 mM NaOH at $95^{\circ} \mathrm{C}, 20 \mathrm{~min} .1 / 10$ volume of 1 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ was added to neutralize. Genome sequences containing CRISPR/Cas9 target sites were amplified with pairs of primers: bmp exon 5

HRMA F3 - ACAGCCTGCAGAAAGCATGA and bmp exon 5 HRMA R3 GCCAGCATTTGTTTACAGTACAGAG; bmp6 exon 7 HRMA F4 - AGAACGTCCCAAAGCCATGT and bmp6 exon 7 HRMA R4 - AACGCACCACCATGTTCCT. To determine if individual gRNA:Cas9 RNPs produced mutations at the desired target sites, HRMA was performed on DNA isolated from 8 individual 24 hpf gRNA:Cas9 RNP-injected embryos using LightScanner PCR Master Mix (BioFire) (32). To detect deletion events, PCR was performed on DNA isolated from 8 individual 24 hpf FO gRNA:Cas9 RNP injected embryos using KAPA HiFi HotStart Ready Mix with the following primer pairs: bmp6 F1 - CATGTGCTGGATAAGATGGTGA and bmp6 R2 - TCCATAGATTCAGCGACGTTC (Figure S1b). These same primer pairs were used to detect deletion events in F1 embryos and adults. The following primer pairs were used to detect the WT bmp6 locus: bmp6 F1 CATGTGCTGGATAAGATGGTGA and bmp6 R1 - GTTCGATCCGCCTACATTTG.

Cartilage and Bone Staining: Fourteen days post fertilization (dpf) zebrafish larvae were anesthetized with Tricaine (3-amino benzoic acidethylester) and processed as previously described $(33,34)$ with the following modifications. Larvae were fixed in $2 \%$ paraformaldehyde for 1 hour, washed for 10 minutes in $50 \% \mathrm{EtOH}$, and then transferred to a solution containing 0.01\% Alizarin Red and 0.04\% Alcian Blue for 24 hours. Larvae were washed in $80 \mathrm{EtOH} / 10 \mathrm{mM}$ MgCl 2 for 60 minutes, $50 \% \mathrm{EtOH}$ for 30 minutes, 25 \% EtOH for 30 minutes, bleached in 3\% $\mathrm{H}_{2} \mathrm{O}_{2} / 0.5 \% \mathrm{KOH}$ for 15 minutes, washed in $2 \mathrm{X} 25 \%$ glycerol/ $0.1 \% \mathrm{KOH}$ and then transferred to 50\% glycerol/0.1\% KOH for imaging.

## References:

1. Verbruggen G, Veys EM. Numerical scoring systems for the anatomic evolution of osteoarthritis of the finger joints. Arthritis Rheum. 1996;39(2):308-20.
2. Damman W, Liu R, Kroon FPB, Reijnierse M, Huizinga TWJ, Rosendaal FR, et al. Do Comorbidities Play a Role in Hand Osteoarthritis Disease Burden? Data from the Hand Osteoarthritis in Secondary Care Cohort. J Rheumatol. 2017;44(11):1659-66.
3. Wetzels JFM, Kiemeney LALM, Swinkels DW, Willems HL, Heijer Md. Age- and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study. Kidney Int. 2007;72(5):632-7.
4. Kazmers NH, Meeks HD, Novak KA, Yu Z, Fulde GL, Thomas JL, et al. Familial Clustering of Erosive Hand Osteoarthritis in a Large Statewide Cohort. Arthritis Rheumatol. 2021;73(3):440-7.
5. Oreiro-Villar N, Raga AC, Rego-Pérez I, Pértega S, Silva-Diaz M, Freire M, et al. PROCOAC (PROspective COhort of A Coruña) description: Spanish prospective cohort to study osteoarthritis. Reumatologia clinica. 2020.
6. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. The Lancet Respiratory Medicine. 2015;3(10):769-81.
7. Welsh S, Peakman T, Sheard S, Almond R. Comparison of DNA quantification methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC Genomics. 2017;18(1):26.
8. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47(5):435-44.
9. Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Scientific Data. 2017;4:170115.
10. Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, et al. Graphtyper enables population-scale genotyping using pangenome graphs. Nat Genet. 2017;49(11):1654-60.
11. Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet. 2008;40(9):1068.
12. Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype estimation using sequencing reads. Am J Hum Genet. 2013;93(4):687-96.
13. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS genetics. 2009;5(6):e1000529.
14. The Genomes Project C. A global reference for human genetic variation. Nature. 2015;526:68.
15. Delaneau O, Zagury JF, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable and integrative haplotype estimation. Nat Commun. 2019;10(1):5436.
16. Halldorsson BV, Eggertsson HP, Moore KHS, Hauswedell H, Eiriksson O, Ulfarsson MO, et al. The sequences of 150,119 genomes in the UK Biobank. Nature. 2022;607(7920):732-40.
17. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655-64.
18. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904-9.
19. Price AL, Helgason A, Palsson S, Stefansson H, St Clair D, Andreassen OA, et al. The impact of divergence time on the nature of population structure: an example from Iceland. PLoS genetics. 2009;5(6):e1000505.
20. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906-13.
21. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291-5.
22. Sveinbjornsson G, Albrechtsen A, Zink F, Gudjonsson SA, Oddson A, Masson G, et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet. 2016;48(3):314-7.
23. Kong A, Frigge ML, Thorleifsson G, Stefansson H, Young AI, Zink F, et al. Selection against variants in the genome associated with educational attainment. Proc Natl Acad Sci U S A. 2017;114(5):E727-E32.
24. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American journal of human genetics. 2015;97(4):576-92.
25. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526(7571):112-7.
26. Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nature genetics. 2019;51(2):258-66.
27. Saevarsdottir S, Stefansdottir L, Sulem P, Thorleifsson G, Ferkingstad E, Rutsdottir G, et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann Rheum Dis. 2022;81(8):1085-95.
28. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699-710.
29. Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature. 2020;584(7820):244-51.
30. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS genetics. 2014;10(5):e1004383.
31. Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and FO Embryos that Lack Gene Function in Zebrafish. Developmental cell. 2019;51(5):645-57.e4.
32. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS genetics. 2012;8(8):e1002861.
33. Teerlink CC, Jurynec MJ, Hernandez R, Stevens J, Hughes DC, Brunker CP, et al. A role for the MEGF6 gene in predisposition to osteoporosis. Annals of Human Genetics. 2021;85(2):58-72.
34. Walker MB, Kimmel CB. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotechnic \& histochemistry : official publication of the Biological Stain Commission. 2007;82(1):23-8. 35. Styrkarsdottir U, Lund SH, Saevarsdottir S, Magnusson MI, Gunnarsdottir K, Norddahl GL, et al. The CRTAC1 Protein in Plasma Is Associated With Osteoarthritis and Predicts Progression to Joint Replacement: A Large-Scale Proteomics Scan in Iceland. Arthritis \& Rheumatology. 2021;73(11):2025-34.

## SUPPLEMENTARY FIGURES

## Supplementary Figure 1. Generation of zebrafish lacking bmp6 gene function

(A) Schematic illustration of the zebrafish bmp6 locus indicating conserved protein domains (coloured regions) and the guide RNAs (lightning bolts) used to generate a deletion in the bmp6 gene. (B) High resolution melt analysis (HRMA) detects indels generated in the genomes of 24 hpf WT or bmp6 RNP injected embryos. HRMA analysis of WT embryos is represented as grey curves, bmp6_gRNA1 or bmp6_gRNA2 RNP as green and red curves, respectively, and embryos injected with both bmp6_gRNA1 and bmp6_gRNA2 RNPs as blue curves. (C) Schematic representation of WT and $b m p 6^{z 52}$ loci. The $z 52$ is a $1,749 \mathrm{bp}$ deletion that is stably transmitting through the germline.


## Supplementary Figure 2. Protein levels in plasma according to EHOA disease status

Standardized protein levels, adjusted for the age of the individual at the time of plasma collection, sex, collection site, and the storage age of the sample. After adjustment, the plasma protein levels were rank transformed onto the standard normal distribution with mean 0 and standard deviation 1 (35). Association of standardized protein levels with EHOA disease status (EHOA vs. controls) was estimated with logistic regression, adjusting for age at the time of plasma collection, sex, and BMI. Both proteins associate strongly with BMI (MGP: effect= 0.13, $P$ $=0$, IBSP: effect $=-0.03, P=7.1 \times 10^{-38}$ ) and with age (MGP: effect $=0.009, P=3.5 \times 10^{-4}$, IBSP: effect $\left.=0.05, P=5.6 \times 10^{-86}\right)$.
a) Matrix gla protein (MGP)

b) Bone sialoprotein 2 (IBSP)


## Supplementary Figure 3. Loss of bmp6 in FO zebrafish larvae causes erosive-like phenotypes in the vertebral precursors similar to germline mutants.

(A-C'). Analysis of cartilage (blue) and bone (red) in the vertebral column of 14 days post fertilization control RNP and bmp6 RNP injected zebrafish larvae. (A and A') Control RNP larvae have normally segmented and ossified centra (vertebral precursors) and neural (na) and hemal arches (ha). bmp6 FO mutant animals were generated by co-injection of bmp6_rRNA1 and bmp6_gRNA2 RNPs (see Figure S1) at the one-cell stage. In contrast to control RNP injected larvae ( A and $\mathrm{A}^{\prime}$ ), $b m p 6^{+/-}$FO mutant larvae have multiple defects, including large bone erosions (arrow in B and $\mathrm{B}^{\prime}$ ), ectopic bone formation in the centra (arrow in C and $\mathrm{C}^{\prime}$ ), structural defects in the centra (arrowhead in $B$ and $B^{\prime}$ ), and disruption of the neural arches (asterisk in $\mathrm{C}^{\prime}$ ). These are defects are also seen the in the germline allele (Figure 2). No defects are observed in the cartilaginous structures of the fins. All images are lateral views with anterior to the left.


Supplementary Figure 4. Correlation between effects of EHOA variants on EHOA and hand grip strength


## Supplementary Figure 5. Correlation of OR's between EHOA and other OA

The variants were identified by the GO consortium for a) hand OA, b) finger OA, c) thumb OA, d) knee OA, d) hip OA, and d) any type of OA (Boer et al, Cell, 2021). The logOR of these OA phenotypes in the GO data were plotted against the logOR of association of these variants with EHOA. Each variant is indicated by a dot and plotter with standard errors.


