25 research outputs found

    Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.</p> <p>Results</p> <p>Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.</p> <p>Conclusion</p> <p>The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.</p

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation

    An experimental evaluation of transgenerational isotope labelling in a coral reef grouper

    No full text
    Transgenerational isotope labelling (TRAIL) using enriched stable isotopes provides a novel means of mass-marking marine fish larvae and estimating larval dispersal. The technique, therefore, provides a new way of addressing questions about demographic population connectivity and larval export from no-take marine protected areas. However, successful field applications must be preceded by larval rearing studies that validate the geochemical marking technique, determine appropriate concentrations and demonstrate that larvae are not adversely affected. Here, we test whether injection of enriched stable barium isotopes (135Ba and 137Ba) at two dose rates produces unequivocal marks on the otoliths of the coral reef grouper Epinephelus fuscoguttatus. We also assess potential negative effects on reproductive performance, egg size, condition and larval growth due to injection of adult female fish. The injection of barium isotopes at both 0.5 and 2.0 mg Ba/kg body weight into the body cavities of gravid female Wsh was 100% successful in the geochemical tagging of the otoliths of larvae from the first spawning after injection. The low-dose rate produced no negative effects on eggs or larvae. However, the higher dose rate of 2 mg Ba/kg produced small reductions in yolk sac area, oil globule area, standard length and head depth of pre-feeding larvae. Given the success of the 0.5 mg Ba/kg dose rate, it is clearly possible to produce a reliable mark and keep the concentration below any level that could affect larval growth or survival. Hence, enriched Ba isotope injections will provide an effective means of mass-marking grouper larvae

    Detrimental effects of host anemone bleaching on anemonefish\ud populations

    No full text
    Coral bleaching and related reef degradation have caused significant declines in the abundance of reef-associated fishes. Most attention on the effects of bleaching has focused on corals, but bleaching is also prevalent in other cnidarians, including sea anemones. The consequences of anemone bleaching are unknown, and the demographic effects of bleaching on associated fish recruitment, survival, and reproduction are poorly understood. We examined the effect of habitat degradation including host anemone bleaching on fish abundance, egg production, and recruitment of the panda anemonefish (Amphiprion polymnus) near Port Moresby, Papua New Guinea. Following a high-temperature anomaly in shallow waters of the region, most shallow anemones to a depth of 6 m (approximately 35% of all the anemones in this area) were severely bleached. Anemone mortality was low but bleached anemones underwent a ~34% reduction in body size. Total numbers of A. polymnus were not affected by bleaching and reduction in shelter area. While egg production of females living in bleached anemones was reduced by ~38% in 2009 compared to 2008, egg production of females on unbleached anemones did not differ significantly between years. Total recruitment in 2009 was much lower than in 2008. However, we found no evidence of recruiting larvae avoiding bleached anemones at settlement suggesting that other factors or different chemical cues were more important in determining recruitment than habitat quality. These results provide the first field evidence of detrimental effects of climate-induced bleaching and habitat degradation on reproduction and recruitment of anemonefish
    corecore