9,598 research outputs found
Comparison of NASTRAN and MITAS nonlinear thermal analyses of a convectively cooled structure
Comparative steady state nonlinear thermal analyses of a scramjet fuel injection strut are presented. The analyses were performed using the NASTRAN finite element program and MITAS, a lumped-parameter thermal analyzer. The strut is subjected to aerodynamic heating on two sides and is internally cooled by hydrogen flowing from internal manifolds through heat exchangers bonded to the primary structure. Based on coolant temperatures determined by MITAS, NASTRAN predicted temperature distributions throughout the strut which were in close agreement with similar MITAS predictions
A computer program incorporating fatigue and fracture criteria in the preliminary design of transport aircraft: An evaluation
The APAS program a multistation structural synthesis procedure developed to evaluate material, geometry, and configuration with various design criteria usually considered for the primary structure of transport aircraft is described and evaluated. Recommendations to improve accuracy and extend the capabilities of the APAS program are given. Flow diagrams are included
Integrated thermal-structural analysis of large space structures
Optimum performance of large space antennas requires very fine control of the shape of the antenna surface since the shape affects both frequency control and pointing accuracy. A significant factor affecting the antenna shape is the temperature of the structure and the resulting deformation. To accurately predict the temperature of the structure, it is necessary first to accurately predict thermal loads. As the structure orbits the Earth, the thermal loads change constantly so that the thermal-structural response varies continuously throughout the orbit. The results from recent applications of integrated finite element methodology to heat load determination and thermal-structural analysis of large space structures are given. Four areas are concentrated on: (1) the characteristics of the integrated finite element methodology, (2) fundamentals of orbital heat load calculation, (3) description and comparison of some radiation finite elements, and (4) application of the integrated finite-element approach to the thermal-structural analysis of an orbiting truss structure
Thermostructural analysis of a scramjet fuel-injection strut
Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated
Supercomputer implementation of finite element algorithms for high speed compressible flows
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes
Improved finite element methodology for integrated thermal structural analysis
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions
Improved finite element methodology for integrated thermal structural analysis
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions
A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis
A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems
Finite element analysis of aerodynamic heating in three dimensional viscous high speed compressible flow: An assessment
The current capability of the finite element method for solving problems of viscous flow is reviewed. Much work has been directed to the simulation of incompressible flows and the relevant features are described. The methods available for, and the problems associated with, the finite element solution of high speed viscous compressible flows are analyzed. A plan for developing finite element research in this area with experimental support is presented
Finite element thermal-structural modeling of orbiting truss structures
A description of an integrated finite element (FE) thermal-structural approach for accurate and efficient modeling of large space structures is presented. A geometric model with a common discretization for all analyses is employed. It uses improved thermal elements and the results from the thermal analysis directly in the structural analysis without any intervening data processing. The differences between the conventional FE approach as implemented in large programs and an integrated FE approach currently under development are described. Considerations for thermal modeling of truss members is discussed and three thermal truss finite elements are presented. The performance of these elements was evaluated for typical truss members neglecting joint effects. A simple truss with metallic joints and composite members was studied to evaluate the effectiveness of the approach for realistic truss designs. A study of the effects of aluminum joints on the thermal deformations of a simple, plane truss with composite members showed that joint effects may be significant. Further study is needed to assess the role of joint effects on the deformation of large trusses
- …