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PREFACE

The revs,.3 was conducted during a four week visit by Dr. Ken Morgan,

University College of Swansea, University of Wales, U.K., to the NASA/

Langley Research Center in early summer of 1982. This assessment is based

primarily upon his and the principal investigator's knowledge of current

finite element literature. In addition, several important technical discus-

sions were held with NASA researchers during Professor Morgan's visit, and

the authors would like to express their appreciation for these helpful

discussions.
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FINITE ELEMENT ANALYSIS OF AERODYNAMIC HEATING IN THREE-

DIMENSIONAL VISCOUS HIGH SPEED COMPRESSIBLE FLOW:

AN ASSESSMENT

By

Ken Morganl and Earl A. Thornton2

SUMMARY

The current capability of the finite element method for solving

problems of viscous flow is reviewed. Much work has been directed to the

simulation of incompressible flows and the relevant features are described.

The methods available for, and the problems associated with, the finite

element solution of high speed viscous compressible flows are analysed.

A plan for developing finite element research in this area with experimental

support is presented.

INTRODUCTION

Thermal stresses and deformations induced by aerodynamic heating on

advanced space transportation vehicles are important concerns in structural

design. Nonuniform heating may have a significant effect on the performance

of the structures, and effective analytical ...,thods for predicting the

structural response are required. For the past few years, the principal

investigator has been working closely with the NASA/Langley Research Center

in developing new finite element methodology for thermal-structural analy-

sis. The finite element method has excellent capabilities for stress analy-

sis of complex structures, but its capabilities for heat transfer and flow

analysis are less well-developed. Some recent progress has been made in

development of finite element methodology for heat transfer, although much

remains to be done before the method is developed to its full potential.

1 Lecturer, Department of Civil Engineering, University College of Swansea,

Wales, U.K., SA28PP.

2 Associate Professor, Department of Mechanical Engineering and Mechanics,

Old Dominion University, Norfolk, Virginia 23508.



For aerodynamic flow analysis the method is still relatively undeveloped in

comparison to the mature state of the finite difference method in Computa-

tional Fluid Dynamics (CFD). The finite elerint method is not competitive

with popular CFD finite difference techniques such as MacCormack's algorithm

(refs. 1-3). Yet the finite element method may offer significant

computational advantages in comparison to existing CFD methods and deserves

further investigation. This report presents a review of recent finite

element progress in viscous flow analysis with recommendations for the

important research required to extend the method to determine the

aerodynamic heating on space transportation vehicles in three-dimensional

viscous compressible flows.

VISCOUS INCOMPRESSIBLE FLOW SIMULATION BY

THE FINITE ELEMENT METHOD

Two-Dimensional Studies

Consideration will be restricted to those analyses which have utilized

the primitive variable formulation in which the basic unknowns are the velo-

city components and the pressure. The powerful stream-function/vorticity

methods will not be considered as this approach is not directly applicable

to the analysis of three-dimensional problems which is our ultimate aim.

The initial work of Taylor and Hood (ref. 4) used the steady state

equations with an 8-noded element for the velocity field. Numerical experi-

mentation soon indicated serious problems when the pressure was approximated

in a similar manner and they were led to the use of 4-noded bilinear ele-

ments for the pressure. The presence of the convective terms in the momen-

tum equations leads to a non-symmetric non-linear matrix system and Hood

(ref.5) developed a non-symmetric frontal solver to obtain the solution

directly at each stage of a standard iteration process. This direct

approach to the solution has been adopted in the majority of the subsequent

work in this area. Other element types have been implemented (ref. 6), but

generally the restriction to a mixed interpolation for velocity and pressure

applies.

If the pressure is not of direct interest, it can be effectively

removed from the analysis (with a consequent reduction in computer core and
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cost) by adopting the penalty function formulation (ref. 7). The pressure,

p, is approximated by

p - - A divu
	

(1)

where u is the velocity vector and a is a large positive number termed

the penalty parameter. The standard incompressibility constraint is then

replaced by equation (1) and the pressure can be removed from the equation

system. This approach works well in practice and the convergence of the

solution to the incompressible solution A + W is now the subject of

theoretical study (ref. 8).

In the solution of transient problems, the usual approach adopted has

been a straightforward implicit algorithm with variants of the Newton-

Raphson method to speed convergence (ref. 6). A notable exception is the

work of Donea et al. (ref. 9) who produced a finite element explicit frac-

tional step method for time-dependent problems that was based on an algo-

rithm originally developed in the context of finite differences by Chorin

(ref. 10). At each time step an auxiliary velocity field is first computed,

which accounts for all contributions to the momentum equations, except those

arising from the pressure. The pressure field is then obtained by solving

the Galerkin equivalent of a Laplace type equation, and the time step is

comple.ed by adding pressure contributions to the auxiliary velocities to

ensure maintenance of incompressibility.

Over the past few years, the literature in this area has been full of

discussions about the need for upwinding. This is a stabilization technique

which has been used by many investigators in problems where the convective

terms dominate (ref. 11). The basic idea is to compensate for numerical

instability due to convection by adding a certain amount of numerical dis-

sipation, Figure 1. It is now generally agreed that this added dissipation

should be anisotropic with a component only along the velocity vector (ref.

12). Some researchers, notably Gresho et al. (ref. 13), have argued against

the use of upwinding techniques, preferring instead mesh refinement in

"problem" areas of the flow field. The streamline upwinding method does

3



involve a free parameter whose value may be exactly determined for steady

linear problems in one dimension but generally is to be selected so as to

maximize the accuracy. In a recent paper, Donea (ref. 14) claims to have

overcome some of the problems associated with the analysis of transient

convective transport processes, and he identifies the source of the trouble

for hyperbolic problems to be the accuracy of the difference approximation

to the time derivative term. He shows that a specific cure has to be

devised for each time-integration method and the results obtained for simple

problems do appear to be An improvement over those produced by conventional

approaches (eg. Figure 2). A detailed assessment of the impact of the tech-

nique to more complicated problems is required, however, before specific

conclusions may be drawn.

Turbulence effects are also being included in finite element models,

and steady turbulent flow has been analyzed successfully using both

algebraic (ref. 15) and more sophisticated (ref. 16) turbulent viscosity

models.

Three-Dimensional Studies

This is a new area for the finite element method, and it is interesting

to notice how it is developing. Tine major contribution so far has been made

by the group of Gresho at Lawrence Livermore Laboratory (refs, 17-19) which

is now reporting the solution of problems involving 6400 elements with

approximately 45,000 equations. These would appear to be the largest finite

element flow computations ever undertaken. To perform these computations

efficiently on a CRAY computer, Gresho has left the implicit formulation,

which he favoured in two-dimensions, and has adopted an explicit scheme of

the Chorin/Donea type and with the simplest elements. He is also investi-

gating the effects of using a highly vectorizable one point quadrature to

evaluate the Galer.kin integrals instead of the standard 2 x 2 x2 Gauss point

distribution which is not so vectorizable. Initial results showed no signi-

ficant variation in accuracy between the two approaches, but a substantial

saving in computer cost is achieved from 7 sec CPU and 13 sec I/O per time

step to 0.3 sec CPU and 1.3 sec I/O per time step. 'Ihe work of this group

has indicated, as might be expected, that major problems with computer

4



storage and execution time can be encountered in the simulation of complex

three-dimensional flows, but they have also shown ways in which these

problems may be overcome and high quality results can be produced.

Reddy (ref. 20) is also attempting three-dimensional flow calculations

and is employing a three-dimensional form of the penalty method. He reports

calculations for natural convection in a cubical box, but admits that his

computational fatuities are such that he is unable to refine the mesh to

investigate the accuracy of the solution.

VISCOUS COMPRESSIBLE FLOW SIMULATION BY

THE FINITE ELEMENT METHOD

The most significant contribution in this area is the work of Baker

(refs. 21-23) who has developed an approach for analyzing three-dimensional

viscous compressible flows. He uses a "dissipative" finite element model

which, when solving

L4 ) - 0	 in Q	 (2)

replaces the classical weighted residual statement

J W iLW do - 0	 (3)
Q

by

nW
	 Di1.4)dil+6

n

W i v(LW^ d-0	 (4)

By performing the usual stability analysis on a linearized one-dimensional

equation, Baker is able to show that with appropriate choice of B the

resulting linear finite element algorithm is more accurate than an equiva-

lent finite difference form in which the dissipation takes the form of a

standard artificial viscosity. The region of interest is initially mapped

into the unit cube, and the Jacobian of the transformation is interpolated

5



over each element in terms of element nodal values. The quantities J-1

and det J 	 are stored for each node of each element, and the need for

numerical integration during the running of the program is then removed by

performing a number of calculations beforehand, and storing the relevant

"hypermatrix" information. The final non-linear matrix equation is solved

by a direct Newton-Raphson procedure, invoking the tensor matrix product

method to significantly reduce the core and CPU requirement. This approach

corresponds to the method of approximate factorization which is widely used

with the finite difference method and consists of replacing the left-hand

side matrix A in the Newton-Raphson procedure by

A 1 A & 0 A n ®A^	 (5)

where, for example, A	 is constructed in the same manner as A but con-

sidcring only one dimensional interpolation and differentiation in the

transformed direction E.

The model has been "tuned" by examining its performance on the one-

dimensional shock tube problem, but only computations with the parabolized

form of the equations appear to have been reported in three dimensions.

The work of Cooke (ref. 24) is interesting, for although it is con-

cerned with two-dimensional applications, it compares critically the

performance of both finite difference and finite element algorithms. The

computer time required by the finite element method is shown to be much

larger than that required for a finite difference solution and this is

identified to be due to the finite element processes of numerical quadra-

ture, assembly and solution. As has already been mentioned, the finite

element practitioners who are currently working with three-dimensional con-

figurations are aware of these restrictions and are developing techniques

designed at reducing the CPU time penalty of the finite element method.

Other criticisms of the finite element method, such as thoae concerned with

the ability to include upwinding, have been removed by recent finite element

developments described in the preceding sections. Cooke does emphasize that

accurate results appear to be the rule rather than the exception with the

finite element method, and that the variable grid capability is the method's

greatest asset.
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RECENT TRENDS IN SOLVING FINITE ELEMENT

SYSTEM EQUATIONS

In addition to the improvements in finite element modelling work

already described, basic algorithmic development studies are currently being

carried out to improve the competitiveness of the finite element method.

This work it; aimed at providing economic solution techniques for the system

equations. Noteble here is the work of Hughes et al. (ref. 25) who propose

an element -by-element solution scheme which avoids the assembly process by

working solely with the element equations. This approach appears attractive

but it needs to be more thoroughly tested. On an operations count basis

(see Fig. 3) it should certainly prove advantageous for 3D problems involv-

ing a single degree of freeiom per node, but will it prove as competitive

for systems of interest where the element matrix is typically 40 x40, and is

it a vectorizable process? Sample results of applying the method to a

simple problem are shown in Figure 4.

An alternative approach ie suggested by the work of Park (ref. 26) in

which the actual equation system is taken to be of the form

(M + At K) n _ f	 (6)

where n denotes the time level. Matrix inversion can be avoided if

equation (6) is replaced by

_1	 1

M (I + At M	 L) (I + At M	 U) ^n _ f	 (7)

where

T
K • L+U, L -U	 (8)

and L and U are lower and upper triangular mrtrices, respectively.

Equations (6) and (7) agree to 0(At 2 ) but it was found that, although

stability could often be guaranteed, unacceptable errors are produced, even

for intermediate values of At. Attempts at using a non-symmetric splitting

(i.e. LT s U) in equation (8) were more successful, but the production of

7



a general method for performing this splitting was not forthcoming. Park,

therefore, retained the symmetric split and replaced equation (6) by

(M + Aem + 6t(F +
'
&tk)) O n ` f	 (9)

where m and k are diagonal matrices yet to be determined. 'fie equation

(M + ©t2 m) { ( I + p t L) ( I + &t U)} m n ` f	 (10)

is used instead of equation ( 7) where now

L	 (M + At2 m) 1 (L +
 At

-
	

k)

U	 (M + &t2 m) 1 (U + At k)	 (11)

and it follows that equation ( 10) reduces to equation (6) provided that

_1

{ m + k + (L + At k) ( M + At2 m) (U + ^t k)} On	 0.	 (12)
2	 —	 — — 2 —

It is not possible to apply equation (12) at level n as required since

e is unknown and, therefore, k and m are determined by applying

equation ( 12) to the solution at level n- 1. This approach has been shown

to remove the poor accuracy associated with the first method for sow simple

structural dynamics examples, but no evidence is available which supports

its adoption for more complicated problems.

In fluid flow modelling it is frequently essential Co use a fine mesh

in the vicinity of solid boundaries, to ensure adequate representation of

the boundary layer, whereas a much coarser mesh may be used in the flow

interior. The stability criterion associated wit i the fine mesh miy rule

out the use of an explicit method, whereas the explicit stability limit for

the coarse mesh alone could be acceptable. The solution in this case may be

the use of a mixed implicit -explicit technique in which the elements forming

the fine mesh are treated implicitly while those in the coarse mesh are

treated explicitly (ref. 27). As an example, Figure S shows a finite ele-

ment mesh with 3 explicit elements end 2 implicit elements and the structure

8



of the resulting matrix which must be inverted assuming 2 unknowns per node.

In the solution process the zero entries outside the profile need not be

stored or operated upon. A finite difference equivalent of this type of

approach has been investigated by Shang (ref. 28). He found an order of

magni,.ude increase in speed over the explicit method could be achieved, but

numerical oscillations were observed with some coarse grid configurations in

3D.

THE DEVELOPMENT OF A FINITE ELEMENT COMPUTER PROGRAM FOR

ANALYSIS OF AERODYNAMIC HEATING IN THREE-DIMENSIONAL

HIGH SPEED COMPRESSIBLE VISCOUS FLOW

It is clear at the outset that any computer program for the local

analysis of three-dimensional flows will require sophisticated pre- and

past-processing software for displaying the initial configuration, boundary

conditions and the computed results in a convenient fashion. It is not

proposed, at least initially, to spend a large amount of time in developing

such software but to utilize and develop existing and proposed facilities

available at NASA/Langley, e.g. the pre-processing might be accomplished via

a variant of PATRAN-G while the post-processing can utilize the software

currently in use with, and under development for, 3D finite difference

codes. The main effort can then be directed at producing a finite element

computer program for solving the equations of high speed compressible flow

in, eventually, three dimensions. As has been shown by the work of Gresho

(refs. 17-19), the program will only be capable of handling the size of

problem envisaged (of the order of 105 unknowns), provided it is highly

vectorized so as to make full use of the vector processing speed of the

Langley Cyber 203 (refs. 29-31). The optimum finite element solution algo-

rithm is by no means apparent at this stage and parallel algorithm and tech-

nique investigation will be required before large scale problems can be

attempted. The stages of development envisaged are shown in Figure 6. The

2D code, which will be produced initially, will be written quite generally

as far as the number of dimensions is concerned, so that the transfer to 3D

at the end of Stage 3 should prove straightforward. It is envisaged that an

essential feature of the development will be the comparison of numerical

results with experimental observations. Preliminary discussions have taken

9



place with regard to possible experiments that might be useful for code

validation in the initial stages of the development. In the later stages,

code validation will become more critical and experimental support essen-

tial. These later experiments would have to be detailed during Stage 3, by

which time any uncertainties and numerical problems needing further investi-

gation would have become apparent.

CONCLUDING REMARKS

This report reviews the current status of viscous flow modelling by the

finite element technique. It is apparent that very little published finite

element work is available in the area of high speed compressible viscous

flow and that this is a challenging field for the finite element method. A

review has also been made of some of the techniques which are currently

under investigation for the solution of finite element system equations. A

proposed program of work leading to the production of a finite element simu-

lator for local analysis of 3D high speed viscous compressible flow,

governed by the full Navier-Stokes equations, has been outlined. Experimen-

tal support has been identified as an essential feature of the simulator

validation process.

10



APPENDIX

Using tensor notation and the summation convention, the equations of

compressible viscous flow can be written as

Continuity	
ap + a	

(Pu j )	 0
at	 ax.

a	 a
Momentum	 — (Pu.) +	 (uj pu. + P 6 j - Q. j )	 0

at	 1	 ax.	
1	 1	 1

i

Energy	 a (p e) + a	 (u. pe + u. p - ok uk - k 2T—) - 0
at	 ax.	 ax.

3	 3

Equation of state	 e - C 
v 
T p PRT

(perfect gas)

Stress / rate of	 aui	 2u.	 au 
k-	 ^ _

strain law	 oij U (T) ^x	
U(T)

+ 	—T— ^xk dij
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Figure 1. Steady advection-diffu:4ion in one dimension:
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FITY

element-by-element	 globally implicit

linear	 0(N2)	 0(143)
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(a) Operation count comparison in two dimensions (per time step)

element-by-element	 globally implicit

linear	 0(N3)	 0(N5)

non-linear	 _	 0(N3)	 0(N7)

(b) Operation count comparison in three dimensions (per time step)

Figure 3. A comparison of operation counts between the element-by-
element algorithm of Hughes et al. (ref. 25), and the

standard globally implicit methods for a finite element

solution of a problem involving N nodes with a single

degree of freedom per node.
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Figure 5. Two-dimensional implicit-explicit finite-element mesh and
profile of system matrix (from Hughes and Liu, ref. 27).



OOUllangley

Stage 1

Aug. 82 - June 83

The production of a 21) unsteady
code VISCOH2O designed to be as
simple as possible and initially
to be tested on iD shock tube
problems.

Stage 2

June 83 - Sept. 83

21) calculations using VISCOH2O
- numerical comparisons.

Stage 3

Sept. 83 - June 84

Implementation and testing of
Improved solution algorithms
into VISCOK21) - numerical and
experimental comparisons.

Swansea

Evaluation of solution algorithms
and identifying possible artificial
viscosity models.

Evaluation of methods designed to
improve code efficie , .cy e.g.
integration techniques.

Stage 44

June 84 -

Testing and running of the
optimum 3D code VISCOH30 -
numr.rical and experirnst.ral
comparisons.

Figure 6. Proposed stages in the development of a finite element based
computer code for solving problems of three—dimensional high
speed viscous compressible flows.
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