313 research outputs found
Recommended from our members
Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone
The mobility of many contaminants is redox sensitive and thus related to the reduction oxidation characteristics of the environment. Immobilization of certain contaminants (e.g., chromium, uranium, and technetium) can be achieved by reducing the contaminant. One remediation approach to achieving this is the application of diluted hydrogen sulfide gas mixtures, which may have particular value in vadose zone applications. Previous work has shown this approach to be viable for Cr(VI) remediation of soil waste sites. The primary objective of the current research is to assess the potential of in situ gaseous treatment to the immobilization of U(VI) and Tc(VII). This work also addresses basic science aspects of understanding the redox-related aspects of the mobility of these contaminants in the natural environment, thus providing a mechanistic-based understanding needed to successfully achieve remediation
Recommended from our members
Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone
There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The primary objective of this project was to understand the complex interactions among the contaminants (i.e., Cr, Tc, and U), H{sub 2}S, and various soil constituents. The reaction with iron sulfide is also the focus of the research, which could be formed from iron oxide reduction by hydrogen sulfide. Factors controlling the reductive immobilization of these contaminants were identified and quantified. The results and fundamental knowledge obtained from this project shall help better evaluate the potential of in situ gaseous treatment to immobilize toxic and radioactive metals examined
Comparison of pretreatment characteristics and treatment outcomes for alcohol-, cocaine-, and multisubstance-dependent patients.
We investigated whether pretreatment characteristics and measures of outcome differed for alcohol-, cocaine-, and multisubstance-dependent patients receiving outpatient substance abuse treatment. One hundred and forty substance dependent individuals (32 alcohol, 76 cocaine, and 32 multisubstance) enrolled in a 12-week outpatient treatment program were compared across measures of addiction severity, personality, and treatment-readiness at admission. In-treatment, end-of-treatment and 9-month follow-up assessments of treatment outcome were then compared across the three groups. Outcome measures included reduction in problem severity, abstinence, retention, number of sessions attended, dropout, and counselor and patient ratings of treatment benefit. At admission, the multisubstance group had a higher proportion of positive urines, reported more severe drug, alcohol and psychiatric problems, and displayed higher impulsivity and anxiety scores than one or both of the other groups. However, multisubstance patients were more treatment ready in terms of adopting a total abstinence orientation than alcohol or cocaine patients. While a significant reduction in symptoms occurred for the total sample during treatment as well as at follow-up, comparisons of outcomes did not consistently favor any particular group. The three groups had equivalent improvements in eleven of fourteen during-treatment and five of seven follow-up measures. Despite pretreatment differences, in severity and treatment-readiness, outcomes were more similar than different for alcohol-, cocaine-, and multisubstance-dependent patients. Clinicians should be cautious about forecasting treatment-outcomes for addicted patients based on their primary substances of abuse
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
MADNESS (multiresolution adaptive numerical environment for scientific
simulation) is a high-level software environment for solving integral and
differential equations in many dimensions that uses adaptive and fast harmonic
analysis methods with guaranteed precision based on multiresolution analysis
and separated representations. Underpinning the numerical capabilities is a
powerful petascale parallel programming environment that aims to increase both
programmer productivity and code scalability. This paper describes the features
and capabilities of MADNESS and briefly discusses some current applications in
chemistry and several areas of physics
Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900–2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh “pollution” within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15–1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio
Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions
The effects of soil minerals on chromate (Cr(VI)O(4)(2-), noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al(2)O(3)), titanium oxide (TiO(2), P-25, primarily anatase), and silica (SiO(2)). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al(2)O(3); and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO(2 )and TiO(2 ). The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, k(obs), increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was: -d[Cr(VI)]/dt = k(obs)[H(+)](2)[Cr(VI)][HS(-)](0.70
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum
We report a measurement of the power spectrum of cosmic microwave background
(CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter
(ACTPol) CMB data. The CMB lensing power spectrum is extracted from both
temperature and polarization data using quadratic estimators. We obtain results
that are consistent with the expectation from the best-fit Planck LCDM model
over a range of multipoles L=80-2100, with an amplitude of lensing A_lens =
1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of
the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054;
including baryon acoustic oscillation scale data, we constrain the amplitude of
density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update
constraints on the neutrino mass sum. We verify our lensing measurement with a
number of null tests and systematic checks, finding no evidence of significant
systematic errors. This measurement relies on a small fraction of the ACTPol
data already taken; more precise lensing results can therefore be expected from
the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review
- …