358 research outputs found

    Recent progress in parton distributions and implications for LHC physics

    Get PDF
    I outline some of the most recent developments in the global fit to parton distributions performed by the MRST collaboration

    Update of MRST parton distributions.

    Get PDF
    We discuss the latest update of the MRST parton distributions in response to the most recent data. We discuss the areas where there are hints of difficulties in the global fit, and compare to some other updated sets of parton distributions, particularly CTEQ6. We briefly discuss the issue of uncertainties associated with partons

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease

    Get PDF
    Intranasal delivery provides a practical, non-invasive method of bypassing the blood-brain barrier (BBB) to deliver therapeutic agents to the brain and spinal cord. This technology allows drugs that do not cross the BBB to be delivered to the central nervous system within minutes. It also directly delivers drugs that do cross the BBB to the brain, eliminating the need for systemic administration and its potential side effects. This is possible because of the unique connections that the olfactory and trigeminal nerves provide between the brain and external environment. Intranasal delivery does not necessarily require any modification to therapeutic agents. A wide variety of therapeutics, including both small molecules and macromolecules, can be targeted to the olfactory system and connected memory areas affected by Alzheimer's disease. Using the intranasal delivery system, researchers have reversed neurodegeneration and rescued memory in a transgenic mouse model of Alzheimer's disease. Intranasal insulin-like growth factor-I, deferoxamine, and erythropoietin have been shown to protect the brain against stroke in animal models. Intranasal delivery has been used to target the neuroprotective peptide NAP to the brain to treat neurodegeneration. Intranasal fibroblast growth factor-2 and epidermal growth factor have been shown to stimulate neurogenesis in adult animals. Intranasal insulin improves memory, attention, and functioning in patients with Alzheimer's disease or mild cognitive impairment, and even improves memory and mood in normal adult humans. This new method of delivery can revolutionize the treatment of Alzheimer's disease, stroke, and other brain disorders

    Nuclear Receptors and the Warburg effect in cancer

    Get PDF
    In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950’s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Thermodynamic curvature and black holes

    Full text link
    I give a relatively broad survey of thermodynamic curvature RR, one spanning results in fluids and solids, spin systems, and black hole thermodynamics. RR results from the thermodynamic information metric giving thermodynamic fluctuations. RR has a unique status in thermodynamics as being a geometric invariant, the same for any given thermodynamic state. In fluid and solid systems, the sign of RR indicates the character of microscopic interactions, repulsive or attractive. ∣R∣|R| gives the average size of organized mesoscopic fluctuating structures. The broad generality of thermodynamic principles might lead one to believe the same for black hole thermodynamics. This paper explores this issue with a systematic tabulation of results in a number of cases.Comment: 27 pages, 10 figures, 7 tables, 78 references. Talk presented at the conference Breaking of Supersymmetry and Ultraviolet Divergences in extended Supergravity, in Frascati, Italy, March 27, 2013. v2 corrects some small problem

    Chronic Intranasal Treatment with an Anti-Aβ30-42 scFv Antibody Ameliorates Amyloid Pathology in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    Amyloid-beta peptide (Aβ)-directed active and passive immunization therapeutic strategies reduce brain levels of Aβ, decrease the severity of beta-amyloid plaque pathology and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). As an alternative approach to passive immunization with full IgG molecules, single-chain variable fragment (scFv) antibodies can modulate or neutralize Aβ-related neurotoxicity and inhibit its aggregation in vitro. In this study, we characterized a scFv derived from a full IgG antibody raised against the C-terminus of Aβ, and studied its passage into the brains of APP transgenic mice, as well as its potential to reduce Aβ-related pathology. We found that the scFv entered the brain after intranasal application, and that it bound to beta-amyloid plaques in the cortex and hippocampus of APP transgenic mice. Moreover, the scFv inhibited Aβ fibril formation and Aβ-mediated neurotoxicity in vitro. In a preventative therapeutic approach chronic intranasal treatment with scFv reduced congophilic amyloid angiopathy (CAA) and beta-amyloid plaque numbers in the cortex of APPswe/PS1dE9 mice. This reduction of CAA and plaque pathology was associated with a redistribution of brain Aβ from the insoluble fraction to the soluble peptide pool. Due to their lack of the effector domain of full IgG, scFv may represent an alternative tool for the treatment of Aβ-related pathology without triggering Fc-mediated effector functions. Additionally, our observations support the possibility that Aβ-directed immunotherapy can reduce Aβ deposition in brain vessels in transgenic mice
    • …
    corecore