411 research outputs found

    Signature of deep mantle melting in South Iceland olivine

    Get PDF
    We present new high-precision major and trace element data on olivine macrocrysts from various volcano-tectonic settings in Iceland and use these data as a proxy for mantle mode and melting conditions. Within individual sampling sites examined (seven lavas and one tephra) olivine-dominated fractional crystallization, magma mixing and diffusive re-equilibration control observed variability in olivine composition. High-pressure fractional crystallization of clinopyroxene may have lowered Ca and increased Fe/Mn in one olivine population and subsolidus diffusion of Ni and Fe-Mg affected the mantle-derived Ni/Fo ratio in some compositionally zoned olivine macrocrysts. Interestingly, magmas erupted at the southern tip of the Eastern Volcanic Zone (SEVZ), South Iceland, have olivines with elevated Ni and low Mn and Ca contents compared to olivines from elsewhere in Iceland, and some of the SEVZ olivines have relatively low Sc and V and high Cr, Ti, Zn, Cu and Li in comparison to depleted Iceland rift tholeiite. In these olivines, the high Ni and low Mn indicate relatively deep melting (P-final>1.4GPa,similar to 45km), Sc, Ti and V are compatible with low-degree melts of lherzolite mantle, and elevated Zn may suggest modal (low-olivine) or geochemical (high Zn) enrichment in the source. The SEVZ olivine macrocrysts probably crystallized from magmas derived from olivine-bearing but relatively deep, enriched and fertile parts of the sub-Icelandic mantle, and indicate swift ascent of magma through the SEVZ lithosphere.Peer reviewe

    Mid-crustal storage and crystallization of Eyjafjallajokull ankaramites, South Iceland

    Get PDF
    Our understanding of the long-term intrusive and eruptive behaviour of volcanic systems is hampered by a relatively short period of direct observation. To probe the conditions of crustal magma storage below South Iceland, we have analysed compositions of minerals, mineral zoning patterns, and melt inclusions from two Eyjafjallajokull ankaramites located at Brattaskjol and Hvammsmuli. These two units are rich in compositionally diverse macrocrysts, including the most magnesian olivine (Fo(88)(-)(90)) and clinopyroxene (Mg#(cpx)( )89.8) known from Eyjafjallajokull. Olivine-hosted spinel inclusions have high Cr# (spl )(52-80) and TiO2 (1-3 wt%) and low Al2O3 (8-22 wt%) compared to typical Icelandic chromian spinel. The spinel-olivine oxybarometer implies a moderate oxygen fugacity of Delta logFMQ 0-0.5 at the time of crystallization, and clinopyroxene-liquid thermobarometry crystallization at mid-crustal pressures (1.7-4.2 kbar, 3.0+1.4 kbar on average) at 1120-1195 degrees C. Liquid-only thermometry for melt inclusions with Mg#(melt) 56.1-68.5 and olivine-liquid thermometry for olivine macrocrysts with Fo(80.7-88.9) yield crystallization temperatures of 1155-1222 degrees C and 1136-1213 degrees C, respectively. Diffusion modelling of compositional zonations in the Brattaskjol olivine grains imply that the Brattaskjol macrocusts were mobilized and transported to the surface from their mid-crustal storage within a few weeks (at most in 9-37 days). Trends in clinopyroxene macrocryst compositions and the scarcity of plagioclase indicate that the mid-crustal cotectic assemblage was olivine and clinopyroxene, with plagioclase joining the fractionating mineral assemblage later. In all, the crystal cargoes in the Brattaskjol and Hvammsmtili ankaramites are composed of agitated wehrlitic or plagioclase wehrlitic crystal mushes that crystallized over a large temperature interval at mid-crustal depths.Peer reviewe

    Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models

    Get PDF
    INTRODUCTION: The experiments reported here address the question of whether a short-term hormone treatment can prevent mammary tumorigenesis in two different genetically engineered mouse models. METHODS: Two mouse models, the p53-null mammary epithelial transplant and the c-neu mouse, were exposed to estrogen and progesterone for 2 and 3 weeks, respectively, and followed for development of mammary tumors. RESULTS: In the p53-null mammary transplant model, a 2-week exposure to estrogen and progesterone during the immediate post-pubertal stage (2 to 4 weeks after transplantation) of mammary development decreased mammary tumorigenesis by 70 to 88%. At 45 weeks after transplantation, analysis of whole mounts of the mammary outgrowths demonstrated the presence of premalignant hyperplasias in both control and hormone-treated glands, indicating that the hormone treatment strongly affects the rate of premalignant progression. One possible mechanism for the decrease in mammary tumorigenesis may be an altered proliferation activity as the bromodeoxyuridine labeling index was decreased by 85% in the mammary glands of hormone-treated mice. The same short-term exposure administered to mature mice at a time of premalignant development also decreased mammary tumorigenesis by 60%. A role for stroma and/or systemic mediated changes induced by the short-term hormone (estrogen/progesterone) treatment was demonstrated by an experiment in which the p53-null mammary epithelial cells were transplanted into the cleared mammary fat pads of previously treated mice. In such mice, the tumor-producing capabilities of the mammary cells were also decreased by 60% compared with the same cells transplanted into unexposed mice. In the second set of experiments using the activated Her-2/neu transgenic mouse model, short-term estradiol or estradiol plus progesterone treatment decreased mammary tumor incidence by 67% and 63%, and tumor multiplicity by 91% and 88%, respectively. The growth rate of tumors arising in the hormone-treated activated Her-2/neu mice was significantly lower than tumors arising in non-hormone treated mice. CONCLUSION: Because these experiments were performed in model systems that mimic many essential elements of human breast cancer, the results strengthen the rationale for translating this prevention strategy to humans at high risk for developing breast cancer

    Emplacement of inflated Pāhoehoe flows in the Naude’s Nek Pass, Lesotho remnant, Karoo continental flood basalt province: use of flow-lobe tumuli in understanding flood basalt emplacement

    Get PDF
    Physical volcanological features are presented for a 710-m-thick section, of the Naude’s Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are ‘medial or distal to source’ are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source
    corecore