32 research outputs found

    The effects of dunite fertilization on growth and elemental composition of barley and wheat differ with dunite grain size and rainfall regimes

    Get PDF
    Enhanced weathering (EW) of silicate rocks is a negative emission technology that captures CO2 from the atmosphere. Olivine (Mg2SiO4) is a fast weathering silicate mineral that can be used for EW and is abundant in dunite rock. In addition to CO2 sequestration, EW also has co-benefits in an agricultural context. Adding silicate minerals to soils can significantly improve crop health and growth as the weathering releases elements such as silicon (Si) that can stimulate crop growth and increase stress resistance, a co-benefit that is becoming increasingly important as global warming proceeds. However, dunite also contains heavy metals, especially nickel (Ni) and chromium (Cr), potentially limiting its use in an agricultural context. In this study, we investigate the influence of dunite addition on growth of barley and wheat in a mesocosm experiment. We amended the soil with the equivalent of 220 ton ha-1 dunite, using two grain sizes (p80 = 1020 µm and p80 = 43.5 µm), under two rainfall regimes (each receiving the same amount of 800 mm water y−1 but at daily versus weekly rainfall frequency). Our results indicate that the amendment of fine dunite increased leaf biomass but only with daily rainfall. Aboveground biomass was significantly reduced with weekly rainfall compared to daily rainfall, but this reduction was slightly alleviated by fine dunite application for wheat. This indicates a positive effect of dunite during drying-rewetting cycles. For barley the negative effect of reduced rainfall frequency was not counterbalanced by dunite application. Contrary to our expectations, calcium (Ca) and Si concentrations in crops decreased with fine dunite application, while, as expected, magnesium (Mg) concentration increased. Coarse dunite application did not significantly affect crop nutrient concentrations, most likely due to its lower weathering rate. In contrast to what was expected, plant Ni and Cr concentrations did not increase with dunite application. Hence, despite high dunite application in our experiment, plants did not accumulate these heavy metals, and only benefited from the released nutrients, albeit dependent on grain size and rainfall frequency

    Beschleunigte Verwitterung an Land

    No full text
    Terrestrial enhanced weathering: It is an effective carbon dioxide removal method, which accelerates the natural chemical weathering of rocks. This process, which governs atmospheric CO2 concentrations over geological time scales, can be enhanced by using finely ground rock powder with a massively increased reaction surface. The method can be implemented using existing agricultural infrastructure, particularly in tropical regions where nutrient-poor soils can benefit from the added nutrients and other soil improvement effects generated by spreading rock powder. To fully leverage the potential of enhanced weathering, it is important to consider additional benefits it can provide in conjunction with other biomass-based carbon dioxide removal strategies

    Regional potential of coastal ocean alkalinization with olivine within 100 years

    No full text
    The spreading of crushed olivine-rich rocks in coastal seas to accelerate weathering reactions sequesters atmospheric CO2 and reduces atmospheric CO2 concentrations. Their weathering rates depend on different factors, including temperature and the reaction surface area. Therefore, this study investigates the variations in olivine-based enhanced weathering rates across 13 regional coasts worldwide. In addition, it assesses the CO2 sequestration within 100 years and evaluates the maximum net-sequestration potential based on varying environmental conditions. Simulations were conducted using the geochemical thermodynamic equilibrium modeling software PHREEQC. A sensitivity analysis was performed, exploring various combinations of influencing parameters, including grain size, seawater temperature, and chemistry. The findings reveal significant variation in CO2 sequestration, ranging from 0.13 to 0.94 metric tons (t) of CO2 per ton of distributed olivine-rich rocks over 100 years. Warmer coastal regions exhibit higher CO2 sequestration capacities than temperate regions, with a difference of 0.4 t CO2/t olivine distributed. Sensitivity analysis shows that smaller grain sizes (10 µm) exhibit higher net CO2 sequestration rates (0.87 t/t) in olivine-based enhanced weathering across all conditions, attributed to their larger reactive surface area. However, in warmer seawater temperatures, olivine with slightly larger grain sizes (50 and 100 µm) displays still larger net CO2 sequestration rates (0.97 and 0.92 t/t), optimizing the efficiency of CO2 sequestration while reducing grinding energy requirements. While relying on a simplified sensitivity analysis that does not capture the full complexity of real-world environmental dynamics, this study contributes to understanding the variability and optimization of enhanced weathering for CO2 sequestration, supporting its potential as a sustainable CO2 removal strategy

    Global Unconsolidated Sediments Map Database v1.0 (shapefile and gridded to 0.5° spatial resolution)

    No full text
    Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness, where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice-free land area. Here, alluvial sediments cover about 23% of the mapped total ice-free area, followed by aeolian sediments (~21%), glacial sediments (~20%), and colluvial sediments (~16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past

    Table_1_Soil electrical conductivity as a proxy for enhanced weathering in soils.XLSX

    No full text
    To effectively monitor and verify carbon dioxide removal through enhanced weathering (EW), this study investigates the use of soil electrical conductivity (EC) and volumetric water content (θ) as proxies for alkalinity and dissolved inorganic carbon (DIC) in soil water. EC-θ sensors offer a cost-effective and straightforward alternative to traditional soil and water sampling methods. In a lab experiment, three different substrates were treated with NaHCO3 solutions to increase the alkalinity of the soil water and analyze the response. The combination of EC and θ to track the increase in carbonate alkalinity due to EW, and therefore CO2 consumption, is applicable for low cation exchange capacity (CEC) soil-substrates like the used quartz sand. However, the presence of organic material and pH-dependent CEC complicates the detection of clear weathering signals in soils. In organic-rich and clay-rich soils, only a high alkalinity addition has created a clear EC signal that could be distinguished from a non-alkaline baseline with purified water. Cation exchange experiments revealed that the used soil buffered alkalinity input and thereby might consume freshly generated alkalinity, initially mitigating CO2 uptake effects from EW application. Effective CEC changes with pH and pH buffering capacity by other pathways need to be considered when quantifying the CO2 sequestration potential by EW in soils. This should be estimated before the application of EW and should be part of the monitoring reporting and verification (MRV) strategy. Once the soil-effective CEC is raised, the weathering process might work differently in the long term.</p

    Table_2_Soil electrical conductivity as a proxy for enhanced weathering in soils.DOCX

    No full text
    To effectively monitor and verify carbon dioxide removal through enhanced weathering (EW), this study investigates the use of soil electrical conductivity (EC) and volumetric water content (θ) as proxies for alkalinity and dissolved inorganic carbon (DIC) in soil water. EC-θ sensors offer a cost-effective and straightforward alternative to traditional soil and water sampling methods. In a lab experiment, three different substrates were treated with NaHCO3 solutions to increase the alkalinity of the soil water and analyze the response. The combination of EC and θ to track the increase in carbonate alkalinity due to EW, and therefore CO2 consumption, is applicable for low cation exchange capacity (CEC) soil-substrates like the used quartz sand. However, the presence of organic material and pH-dependent CEC complicates the detection of clear weathering signals in soils. In organic-rich and clay-rich soils, only a high alkalinity addition has created a clear EC signal that could be distinguished from a non-alkaline baseline with purified water. Cation exchange experiments revealed that the used soil buffered alkalinity input and thereby might consume freshly generated alkalinity, initially mitigating CO2 uptake effects from EW application. Effective CEC changes with pH and pH buffering capacity by other pathways need to be considered when quantifying the CO2 sequestration potential by EW in soils. This should be estimated before the application of EW and should be part of the monitoring reporting and verification (MRV) strategy. Once the soil-effective CEC is raised, the weathering process might work differently in the long term.</p
    corecore