91 research outputs found
Evidence of terbium and oxygen co-segregation in annealed AlN:Tb
Analytical scanning transmission electron microscopy has been applied to study aluminium nitride (AlN) doped with terbium (Tb) and annealed at 800 ºC. The correlation of the maps of Tb and oxygen (O) from electron energy-loss spectrum (EELS) imaging proves that these two elements co-segregate, replacing aluminium (Al) and nitrogen (N) atoms, respectively. This agrees well with modelling which predicted the existence of Tb–O complexes needed to fit all lines in the rather complicated cathodoluminescence emission spectrum of the sample
Curie temperature and carrier concentration gradients in MBE grown GaMnAs layers
We report on detailed investigations of the electronic and magnetic
properties of ferromagnetic GaMnAs layers, which have been fabricated by
low-temperature molecular-beam epitaxy. Superconducting quantum interference
device measurements reveal a decrease of the Curie temperature from the surface
to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly
shows a homogeneous Mn distribution, a pronounced decrease of the carrier
concentration from the surface towards the GaMnAs/GaAs interface has been found
by Raman spectroscopy as well as electrochemical capacitance-voltage profiling.
The gradient in Curie temperature seems to be a general feature of GaMnAs
layers grown at low-temperature. Possible explanations are discussed.Comment: 3 pages, 4 figures, submitted to AP
Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (11-20) GaN
We investigate the influence of different types of template micro-patterning on defect reduction and optical properties of non-polar GaN using detailed luminescence studies. Non-polar (11-20) (or a-plane) GaN exhibits a range of different extended defects compared with its more commonly used c-plane counterpart. In order to reduce the number of defects and investigate their impact on luminescence uniformity, non-polar GaN was overgrown on four different GaN microstructures. The micro-patterned structures consist of a regular microrod array; a microrod array where the -c-side of the microrods has been etched to suppress defect generation; etched periodic stripes and finally a subsequent combination of etched stripes and etched microrods (double overgrowth). Overall the presence of extended defects, namely threading dislocations and stacking faults (SFs) is greatly reduced for the two samples containing stripes compared with the two microrod samples. This is evidenced by more uniform emission and reduction in dark regions of non-radiative recombination in room temperature cathodoluminescence imaging as well as a reduction of the SF emission line in low temperature photoluminescence. The observed energy shifts of the GaN near band edge emission are related to anisotropic strain relaxation occurring during the overgrowth on these microstructures. A combination of stripes and microrods is a promising approach for defect reduction and emission uniformity in non-polar GaN for applications in light-emitting devices as well as power electronics
Recommended from our members
Comparative study of (0001) and (11-22) InGaN based light emitting diodes
We have systematically investigated the doping of (11-22) with Si and Mg by metal-organic vapour phase epitaxy for light emitting diodes (LEDs). By Si doping of GaN we reached electron concentrations close to 1020cm-3, but the topography degrades above mid 1019cm-3. By Mg doping we reached hole concentrations close to 5 × 1017cm-3, using Mg partial pressures about 3' higher than those for (0001). Exceeding the maximum Mg partial pressure led to a quick degradation of the sample. Low resistivities as well as high hole concentrations required a growth temperature of 900 °C or higher. At optimised conditions the electrical properties as well as the photoluminescence of (11-22) p-GaN were similar to (0001) p-GaN. The best ohmic p-contacts were achieved by NiAg metallisation. A single quantum well LED emitting at 465nm was realised on (0001) and (11-22). Droop (sub-linear increase of the light output power) occurred at much higher current densities on (11-22). However, the light output of the (0001) LED was higher than that of (11-22) until deep in the droop regime. Our LEDs as well as those in the literature indicate a reduction in efficiency from (0001) over semi-polar to non-polar orientations. We propose that reduced fields open a loss channel for carriers.This work was supported by EU-FP7 ALIGHT No. NMP-2011-280587. The data to produce the figures can be found under the permanent url https://www.repository.cam.ac.uk/handle/1810/253538
Luminescence behavior of semipolar (101¯1) InGaN/GaN “bow-tie” structures on patterned Si substrates
In this work, we report on the innovative growth of semipolar “bow-tie”-shaped GaN structures containing InGaN/GaN multiple quantum wells (MQWs) and their structural and luminescence characterization. We investigate the impact of growth on patterned (113) Si substrates, which results in the bow-tie cross section with upper surfaces having the (101¯1) orientation. Room temperature cathodoluminescence (CL) hyperspectral imaging reveals two types of extended defects: black spots appearing in intensity images of the GaN near band edge emission and dark lines running parallel in the direction of the Si stripes in MQW intensity images. Electron channeling contrast imaging (ECCI) identifies the black spots as threading dislocations propagating to the inclined (101¯1) surfaces. Line defects in ECCI, propagating in the [12¯10] direction parallel to the Si stripes, are attributed to misfit dislocations (MDs) introduced by glide in the basal (0001) planes at the interfaces of the MQW structure. Identification of these line defects as MDs within the MQWs is only possible because they are revealed as dark lines in the MQW CL intensity images, but not in the GaN intensity images. Low temperature CL spectra exhibit additional emission lines at energies below the GaN bound exciton emission line. These emission lines only appear at the edge or the center of the structures where two (0001) growth fronts meet and coalesce (join of the bow-tie). They are most likely related to basal-plane or prismatic stacking faults or partial dislocations at the GaN/Si interface and the coalescence region
Exploring the use of social capital to support technology adoption and implementation
Information System (IS) implementations are a risky business with studies showing only a 16%-29% success rate. This research explores the use of social capital to support technology implementations. This research brings together two distinct bodies of knowledge: social network analysis (SNA) and technology acceptance models, in order to better understand the relationship between social capital and technology acceptance. The first aspect of the research looks at social network centrality and influence measures as an alternative means to measure social influence in the Unified Theory of Acceptance and Use of Technology (UTAUT) model. The social influence construct has proven to be inconsistent in past research. An individual‟s decision to adopt a new technology is influenced by their social context or the informal social network within which they work. The social capital of others influences their attitudes and decision to adopt a new technology. Social Capital, as measured through social network analysis, could be substituted for the social influence construct of the UTAUT model. Two revised UTAUT models are developed and tested. The second aspect of this research uses social capital to inform membership of a Community of Practice (CoP) to support a Finance Management System implementation in a higher education organization. SNA can be used to gain an understanding of the social network and identify individuals with high social capital. There is growing evidence that CoP support successful organizational change initiatives but it is less clear how CoP membership might be determined. SNA provides an evidence-based approach to CoP formation. The IS implementation cases described in the paper demonstrate an innovative approach to IS implementation grounded in social capital and technology acceptance research that add to the body of knowledge in both theory and practice.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson\u27s disease study
\ua9 The Author(s) 2024. Estimates of the spectrum and frequency of pathogenic variants in Parkinson’s disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson’s disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9
7 10−34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1
7 10−35). Female patients were 22% more likely to have a positive PDGT (P = 3
7 10−4), and for individuals with FH+ this likelihood was 55% higher (P = 1
7 10−14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD
Effectiveness and safety of opicapone in Parkinson’s disease patients with motor fluctuations: the OPTIPARK open-label study
Background The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. Methods OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson’s disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician’s Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). Results Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: − 3.0 ± 4.6, p < 0.0001) and motor scores during ON (− 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of − 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. Conclusions Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. Trial registration Registered in July 2016 at clinicaltrials.gov (NCT02847442)
- …