9 research outputs found

    Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array

    Get PDF
    PURPOSE: It has been known for several decades that the magnitude of the corneal electroretinogram (ERG) varies with position on the eye surface, especially in the presence of focal or asymmetric stimuli or retinal lesions. However, this phenomenon has not been well-characterized using simultaneous measurements at multiple locations on the cornea. This work provides the first characterization of spatial differences in the ERG across the rat cornea. METHODS: A contact lens electrode array was employed to record ERG potentials at 25 corneal locations simultaneously following brief full-field flash stimuli in normally sighted Long-Evans rats. These multi-electrode electroretinogram (meERG) responses were analyzed for spatial differences in a-wave and b-wave amplitudes and implicit times. RESULTS: Spatially distinct ERG potentials could be recorded reliably. Comparing relative amplitudes across the corneal locations suggested a slight non-uniform distribution when using full-field, near-saturating stimuli. Amplitudes of a- and b-waves were approximately 3 % lower in the inferior quadrant than in the superior quadrant of the cornea. CONCLUSIONS: The present results comprise the start of the first normative meERG database for rat eyes and provide a basis for comparison of results from eyes with functional deficit. Robust measures of spatial differences in corneal potentials will also support optimization and validation of computational source models of the ERG. To fully utilize the information contained in the meERG data, a detailed understanding of the roles of the many determinants of local corneal potentials will eventually be required

    At-home blood collection and stabilization in high temperature climates using home RNA

    Get PDF
    Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (\u3e30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have develope

    Vacuum field emission microelectronic devices based on silicon nanowhiskers

    Get PDF
    Vacuum field emission devices have become a promising candidate for emerging display technology due to their interesting properties compared to conventional thermionic emission devices that require high temperature and power to operate. Unlike thermionic emission, field emission devices can induce the electrons to emit at low temperature; sharp and thin emitters on the cathode are desired in order to increase the field emission. Many candidates from other research groups, such as Carbon Nanotubes (CNTs), SiC and ZnO, appear to have high field emission, but their complicated fabrication processes are the drawback. The silicon nanowhiskers produced by Geological & Nuclear Sciences (GNS) using Electron-Beam Rapid Thermal Annealing (EB-RTA) are an alternative material that is fast, inexpensive and uncomplicated to produce. They are based on the thermal desorption of silicon oxide, which forms silicon nanowhiskers on the silicon wafer in a short duration. Field emission diode structures on Silicon on Insulator (SOI) wafers were fabricated in order to investigate the field emission due to these GNS silicon nanowhiskers. An uncomplicated fabrication process using photolithography and etching process was developed. Electron beam lithography (EBL) was also used to create the different feature sizes directly onto the SOI wafer. The silicon nanowhiskers grown on these structures are as high as 35 nm with density distribution up to 30 µm⁻¹. The electrical characteristics of these devices are diode-like when the voltage range from -40 V to 40 V is applied. The best samples produced an emitted current as high as 2 mA, which is suitable for many applications, such as flat panel displays, x-ray sources and high frequency devices. However, in some cases, the diode structures failed to show the diode-like characteristics, perhaps as a result of bad contact connections or the emitters have been worn out after applying high voltage for some time. Device life time and stability were also considered and investigated via a number of electrical measurements for a period of time as long as one hour in this study. Even though these nanowhiskers have shown promising results, there are still many aspects to be considered to improve the experiments, such as the vacuum system and better contacts
    corecore