5 research outputs found

    Synthèse de lactones fonctionnalisées par réaction de thiol-ène et leur application à la préparation de polymères biodégradables de propriétés modulables

    Get PDF
    The development of new sustainable polymers endowed with improved performances but minimal environmental impact has become a major concern. In this context, aliphatic polyesters are attracting increasing attention in the medical field and packaging applications, due to their biodegradable character and suitable physical properties. Ring-opening polymerization (ROP) is a method that has been used in these areas to access a broad range of polyesters with different and well-controlled structures. One of the well-known lactone monomers for ROP is epsilon-caprolactone (epsilon-CL), a compound derived from petrochemical source. An alternative lactone monomer derived from biomass is epsilon-decalactone (epsilon-DL). Being a 7-membered ring as epsilon-CL, epsilon-DL is thus a renewable monomer that is attracting increasing attention. However, the pendant butyl group at epsilon-position has a large impact on mechanical and thermal properties as well as degradation rates. To modulate these properties, we have been working with the functionalized monomers of close structure to ensure similar behavior in ROP. First, the epsilon-functionalized-epsilon-CL monomers were prepared from 6-heptynoic acid by a sequential transition metal catalyzed cycloisomerization and subsequent thiol-ene reaction. Afterwards, their copolymerization with epsilon-DL has been explored including the identification of controlled/living polymerization using InCl3-based bicomponent catalyst and the confirmation of their random architecture. In addition, the preparation of copolymers featuring pendant carboxyl groups by post-modification steps have also been completely achieved. Finally, the hydrolytic and enzymatic degradation of these functionalized copolymers has been thoroughly investigated, proving the influence of our new functionalized monomer (in deprotected form) on degradation rates of PDL.Le développement de nouveaux polymères durables dotés de performances améliorées avec un impact environnemental minimal est devenu une préoccupation majeure. Dans ce contexte, les polyesters aliphatiques attirent de plus en plus l'attention dans le domaine médical et les applications d'emballage, en raison de leur caractère biodégradable et de leurs propriétés physiques appropriées. La polymérisation par ouverture de cycle (ROP) est une méthode qui a été utilisée dans ces domaines pour accéder à une vaste gamme de polyesters ayant des structures différentes et bien contrôlées. L'un des monomères de type lactone bien connus pour la ROP est l'epsilon-caprolactone (epsilon-CL), un composé dérivé du pétrole. Une autre lactone dérivée de la biomasse est l'epsilon-décalactone (epsilon-DL). Cycle à 7 chaînons comme l'epsilon-CL, l'epsilon-DL est un monomère renouvelable qui attire de plus en plus d'attention. Le groupe butyle pendant en position epsilon a un impact important sur les propriétés mécaniques et thermiques ainsi que sur la vitesse de dégradation. Pour moduler encore plus ces propriétés, nous avons travaillé avec des monomères fonctionnalisés de structure proche pour assurer un comportement similaire en ROP. Premièrement, les monomères d'epsilon-CL- epsilon-fonctionnalisés ont été préparés à partir de l'acide 6-heptynoïque par une stratégie séquentielle à grande économie d'atome : une cycloisomérisation catalysée par un métal de transition suivie d'une réaction thiol-ène. Ensuite, leur copolymérisation avec l'epsilon-DL a été réalisée en utilisant un catalyseur bicomposant à base d'InCl3, un comportement de polymérisation contrôlée/vivante a été identifié et des copolymères à caractère aléatoire ont été obtenus. Grâce à cette stratégie, la préparation de copolymères présentant des groupes acides carboxyliques pendants a été développée. Enfin, la dégradation en conditions hydrolytiques et enzymatiques de ces copolymères fonctionnalisés a fait l'objet d'études approfondies, prouvant l'influence de notre nouveau monomère fonctionnalisé (sous forme déprotégé) sur la vitesse de dégradation du PDL

    Synthesis of functionalized lactones by thiol-ene reaction and their application to the preparation of tunable biodegradable polymers

    No full text
    Le développement de nouveaux polymères durables dotés de performances améliorées avec un impact environnemental minimal est devenu une préoccupation majeure. Dans ce contexte, les polyesters aliphatiques attirent de plus en plus l'attention dans le domaine médical et les applications d'emballage, en raison de leur caractère biodégradable et de leurs propriétés physiques appropriées. La polymérisation par ouverture de cycle (ROP) est une méthode qui a été utilisée dans ces domaines pour accéder à une vaste gamme de polyesters ayant des structures différentes et bien contrôlées. L'un des monomères de type lactone bien connus pour la ROP est l'epsilon-caprolactone (epsilon-CL), un composé dérivé du pétrole. Une autre lactone dérivée de la biomasse est l'epsilon-décalactone (epsilon-DL). Cycle à 7 chaînons comme l'epsilon-CL, l'epsilon-DL est un monomère renouvelable qui attire de plus en plus d'attention. Le groupe butyle pendant en position epsilon a un impact important sur les propriétés mécaniques et thermiques ainsi que sur la vitesse de dégradation. Pour moduler encore plus ces propriétés, nous avons travaillé avec des monomères fonctionnalisés de structure proche pour assurer un comportement similaire en ROP. Premièrement, les monomères d'epsilon-CL- epsilon-fonctionnalisés ont été préparés à partir de l'acide 6-heptynoïque par une stratégie séquentielle à grande économie d'atome : une cycloisomérisation catalysée par un métal de transition suivie d'une réaction thiol-ène. Ensuite, leur copolymérisation avec l'epsilon-DL a été réalisée en utilisant un catalyseur bicomposant à base d'InCl3, un comportement de polymérisation contrôlée/vivante a été identifié et des copolymères à caractère aléatoire ont été obtenus. Grâce à cette stratégie, la préparation de copolymères présentant des groupes acides carboxyliques pendants a été développée. Enfin, la dégradation en conditions hydrolytiques et enzymatiques de ces copolymères fonctionnalisés a fait l'objet d'études approfondies, prouvant l'influence de notre nouveau monomère fonctionnalisé (sous forme déprotégé) sur la vitesse de dégradation du PDL.The development of new sustainable polymers endowed with improved performances but minimal environmental impact has become a major concern. In this context, aliphatic polyesters are attracting increasing attention in the medical field and packaging applications, due to their biodegradable character and suitable physical properties. Ring-opening polymerization (ROP) is a method that has been used in these areas to access a broad range of polyesters with different and well-controlled structures. One of the well-known lactone monomers for ROP is epsilon-caprolactone (epsilon-CL), a compound derived from petrochemical source. An alternative lactone monomer derived from biomass is epsilon-decalactone (epsilon-DL). Being a 7-membered ring as epsilon-CL, epsilon-DL is thus a renewable monomer that is attracting increasing attention. However, the pendant butyl group at epsilon-position has a large impact on mechanical and thermal properties as well as degradation rates. To modulate these properties, we have been working with the functionalized monomers of close structure to ensure similar behavior in ROP. First, the epsilon-functionalized-epsilon-CL monomers were prepared from 6-heptynoic acid by a sequential transition metal catalyzed cycloisomerization and subsequent thiol-ene reaction. Afterwards, their copolymerization with epsilon-DL has been explored including the identification of controlled/living polymerization using InCl3-based bicomponent catalyst and the confirmation of their random architecture. In addition, the preparation of copolymers featuring pendant carboxyl groups by post-modification steps have also been completely achieved. Finally, the hydrolytic and enzymatic degradation of these functionalized copolymers has been thoroughly investigated, proving the influence of our new functionalized monomer (in deprotected form) on degradation rates of PDL

    A SIMPLE In-BASED DUAL CATALYST ENABLES SIGNIFICANT PROGRESS IN ε- DECALACTONE RING-OPENING (CO)POLYMERIZATION

    No full text
    International audienceA dual catalyst associating InCl3 and triethylamine was found to promote controlled ring-opening polymerization of ε-decalactone (ε-DL), a monomer derived from sustainable resources. Polydecalactones (PDL) of well-defined structures with Mn up to 30 000 g/mol (Đ ~ 1.2) have been obtained free of catalytic residues under mild conditions (toluene, 3M, 60 °C, 1-20 h). Besides the typical ester end-capped PDLs, amide end groups have been installed thanks to the ability of the dual catalyst to perform with primary amines as initiators. Block PDL-b-PCL / PCL-b-PDL and random P(DL-r-CL) copolymers have been also prepared by sequential and simultaneous ROP with ε-caprolactone, respectively. The absence of undesirable 2 transesterifications reactions, as apparent from NMR, SEC, and DSC analyses, enable the preparation of well-defined copolymers

    Microphase Separation of Polybutyrolactone-Based Block Copolymers with Sub-20 nm Domains

    No full text
    Polybutyrolactone tri- and diblock copolymers with welldefined structures and narrow molar distributions were prepared by trifluoromethanesulfonic acid-organocatalyzed ring-opening polymerization of β-butyrolactone initiated with dihydroxylated poly(hydrogenated butadiene) and hydroxylated polystyrene. Study of the phase separation behavior of these block copolymers in the bulk and in thin film shows their ability to segregate even for low molecular weights, giving rise to spherical, cylindrical, and lamellar morphologies with periodicities in the range 10−20 nm. The Flory−Huggins interaction parameters estimated from the order-to-disorder transition temperatures are in the same range or higher than those of other block copolymers associating biodegradable and polyolefin blocks

    Enhancing protein trapping efficiency of graphene oxide-polybutylene succinate nanofiber membrane via molecular imprinting

    No full text
    Abstract Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane’s ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids
    corecore