769 research outputs found

    Physics performances for Scalar Electrons, Scalar Muons and Scalar Neutrinos searches at CLIC

    Full text link
    The determination of scalar leptons and gauginos masses is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this talk we present results of a study of pair produced Scalar Electrons, Scalar Muons and Scalar Neutrinos searches in a Supersymmetric scenario at 3 TeV at CLIC. We present the performances on the lepton energy resolution and report the expected accuracies on the production cross sections and on the scalar leptons and gauginos masses.Comment: Linera Collider Workshop, LCWS11, 6 pages, 2 figures, 4 table

    Quantification and physical analysis of nanoparticle emissions from a marine engine using different fuels and a laboratory wet scrubber

    Get PDF
    A marine test-bed diesel engine was used to study how international fuel sulfur content (FSC) regulations and wet scrubbing can affect physical properties of submicron exhaust particles. Particle size distributions, particle number and mass emission factors as well as effective densities of particulate emissions were measured for three distillate fuels of varying FSC and a laboratory wet scrubber. While particle number concentrations were reduced by up to 9% when switching to low FSC fuels, wet scrubbing led to increased ultrafine particulate emissions (<30 nm). Exhaust processed through the scrubber was also found to have particles with greater effective densities, a result that directly contradicts the particulate characteristics of low FSC fuel emissions. The results demonstrate that alternative pathways to comply with marine FSC regulations can have opposing effects and thus may have very different implications for important atmospheric processes. The relevance for air quality, and the potential implications for cloud and climate interactions are discussed

    Mapping design skills

    Get PDF
    During a university major restructure it was decided that Industrial Design, a four year degree taught at Penrith campus, and Design and Technology, a three year degree taught at Campbelltown campus, would be delivered and taught across campuses by a combined group of academics. This was a catalyst for an in-depth examination of assessment tasks over the two programs. The extended exercise aimed to identify the skills which students require in order to successfully complete their fmal year project, and to review how and where the requisite skills were taught and assessed in core units over the preceding three years. The exercise also aimed to identify any gaps where students' skills were not being progressively built up to the requisite levels. The assessment and skills analysis was undertaken within a series of workshops where all academic staff from the two design programs engaged in collaborative processes, supported by an industry representative and university teaching development and learning development staff. The process of mapping skills adopted a proactive approach which recognised the benefits of embedding academic skills across the curriculum in order to achieve long-term, sustainable learning outcomes. The process enabled staff to gain a more detailed understanding of skills assessed and taught over the course of the programs, and to identify improvements for both programs. The paper describes the processes used and tools developed by the team in undertaking this project. Outcomes of the process include the implementation and embedding of academic literacy skills in first and fourth-year units, and a restructure of the fourth year and implementation of two fourth-year parallel streams

    Angle of repose of snow: An experimental study on cohesive properties

    Get PDF
    The angle of repose is a measure reflecting the internal friction and cohesion properties of a granular material. In this paper, we present an experimental setup and measurements for the angle of repose of snow for seven different snow samples over a large range of temperatures. The results show that the angle of repose is dependent on the fall height, the temperature, and the grain size of the snow. These variables are quantified, and their interdependencies are separately studied. With increased snow temperature, the angle of repose increases, and this can be explained by the presence of a liquid layer on ice that can be thermodynamically stable at temperatures below the melting point of water. With decreasing grain size the angle of repose also increases which is expected since the cohesive energy decreases more slowly than the grain mass. For increasing fall height, the snow grains generally accelerate to larger collisional velocities, yielding a smaller angle of repose. In general, the dimensionless cohesion number was found to largely reflect the dependencies of the variables and is therefore useful for understanding what affects the angle of repose. The results demonstrate that the drag force and collision dynamics of ice grains are important for understanding how snow accumulates on a surface, for example if one desires predicting snow accretion by simulating a dispersed cloud of snow

    Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature

    Full text link
    Water interactions with organic surfaces are of central importance in biological systems and many Earth system processes. Here we describe experimental studies of water collisions and uptake kinetics on liquid and solid butanol from 160 to 200 K. Hyperthermal D2O molecules (0.32 eV) undergo efficient trapping on both solid and liquid butanol, and only a minor fraction scatters inelastically after an 80% loss of kinetic energy to surface modes. Trapped molecules either desorb within a few ms, or are taken up by the butanol phase during longer times. The water uptake and surface residence time increase with temperature above 180 K indicating melting of the butanol surface 4.5 K below the bulk melting temperature. Water uptake changes gradually across the melting point and trapped molecules are rapidly lost by diffusion into the liquid above 190 K. This indicates that liquid butanol maintains a surface phase with limited water permeability up to 5.5 K above the melting point. These surface observations are indicative of an incremental change from solid to liquid butanol over a range of 10 K straddling the bulk melting temperature, in contrast to the behavior of bulk butanol and previously studied materials.Comment: 28 pages, 4 figures + introduction figur

    Collisional damping of spherical ice particles

    Get PDF
    This paper presents experimental values for the coefficient of restitution (en) for millimeter-sized ice particles colliding with massive walls at different temperatures. Three different wall materials are tested: hardened glass, ice and Acrylonitrile butadiene styrene (ABS) polymer. The results show a high sensitivity to impact velocity Vi, where en decreases rapidly with increasing Vi. The results also show a decrease in en with increasing temperature T. A novel model that predicts en based on the assumption of collisional melting and viscous damping caused by an increased premelted liquid-layer, is proposed. The model predicts both the velocity and the temperature trends seen in the experiments. The difference obtained in experiments between wall materials is also captured by the new model. A generalized regime map for ice particle collisions is proposed to combine the new model with previous work

    Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis

    Get PDF
    Background: Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winterulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other. Results: The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately. Conclusions: From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependen

    Differential effects of two-pore channel protein 1 and 2 silencing in MDA-MB-468 breast cancer cells

    Get PDF
    Two-pore channel proteins, TPC1 and TPC2, are calcium permeable ion channels found localized to the membranes of endolysosomal calcium stores. There is increasing interest in the role of TPC-mediated intracellular signaling in various pathologies; however their role in breast cancer has not been extensively evaluated. TPC1 and TPC2 mRNA was present in all non-tumorigenic and tumorigenic breast cell lines assessed. Silencing of TPC2 but not TPC1 attenuated epidermal growth factor-induced vimentin expression in MDA-MB-468 breast cancer cells. This effect was not due to a general inhibition of epithelial to mesenchymal transition (EMT) as TPC2 silencing had no effect on epidermal growth factor (EGF)-induced changes on E-cadherin expression. TPC1 and TPC2 were also shown to differentially regulate cyclopiazonic acid (CPA)-mediated changes in cytosolic free Ca. These findings indicate potential differential regulation of signaling processes by TPC1 and TPC2 in breast cancer cells

    Changes in CCN activity of ship exhaust particles induced by fuel sulfur content reduction and wet scrubbing

    Get PDF
    Maritime transport remains a large source of airborne pollutants, including exhaust particles that can act as cloud condensation nuclei (CCN). While primary diesel engine exhaust particles are generally considered hydrophobic, international regulations targeting a reduction of particulate emissions from ships may have secondary effects, and therefore influence how exhaust interacts within the atmosphere. The effect of international fuel sulfur content (FSC) regulations on the cloud forming abilities of exhaust particles was investigated using a marine test engine operating on compliant low FSC fuels, non-compliant high FSC distillate fuels and in conjunction with a marine wet scrubber (fresh- and seawater). Particle sizing and liquid droplet activation measurements reveal that compliance measures can have opposing effects on the CCN activity of exhaust particles. For a non-compliant, high FSC fuel, wet scrubbing leads to an increase in CCN activity but not to significant increases in CCN emission factors. However, switching to low FSC fuels resulted in emissions of highly hydrophobic particles, causing a significant reduction in CCN activity resulting in smaller CCN emission factors by at least one order of magnitude. Our observations are supported by chemical analysis of exhaust particles using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (STXM/NEXAFS) spectra. Potential implications of effects on ship exhaust particles for cloud and climate interactions due to different compliance measures are discussed
    • …
    corecore