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Abstract  

Two-pore channel proteins, TPC1 and TPC2, are calcium permeable ion channels found 

localized to the membranes of endolysosomal calcium stores. There is increasing interest in 

the role of TPC-mediated intracellular signaling in various pathologies; however their role in 

breast cancer has not been extensively evaluated. TPC1 and TPC2 mRNA was present in all 

non-tumorigenic and tumorigenic breast cell lines assessed. Silencing of TPC2 but not TPC1 

attenuated epidermal growth factor-induced vimentin expression in MDA-MB-468 breast 

cancer cells. This effect was not due to a general inhibition of epithelial to mesenchymal 

transition (EMT) as TPC2 silencing had no effect on epidermal growth factor (EGF)-induced 

changes on E-cadherin expression. TPC1 and TPC2 were also shown to differentially 

regulate cyclopiazonic acid (CPA)-mediated changes in cytosolic free Ca2+. These findings 

indicate potential differential regulation of signaling processes by TPC1 and TPC2 in breast 

cancer cells.  

  

																																																								
 	Abbreviations: Ca2+, calcium; [Ca2+]CYT, cytosolic free calcium; EGF, epidermal growth 

factor; EMT, epithelial-mesenchymal transition; NAADP, nicotinic acid adenine dinucleotide 

phosphate; siNT, non-targeting siRNA; TPC1, two-pore channel protein 1; TPC2, two-pore 

channel protein 2; TRP, transient receptor potential 
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1. Introduction  

The presence of specific Ca2+ channels is a feature of some cancer subtypes and in some 

cases silencing of proteins that constitute these channels can reduce cancer cell proliferation 

[1]. Examples include TRPV6 and Orai1, where silencing of these proteins alters Ca2+ 

signaling and attenuates the proliferation of breast cancer cells [2,3]. Studies of calcium 

channels in breast cancer cells have mostly focused on transient receptor potential (TRP), 

Orai, ligand-gated, and voltage-gated Ca2+ channels. Two-pore channel (TPC) proteins, 

TPC1 and TPC2, are recently identified ion channels that contribute to nicotinic acid adenine 

dinucleotide phosphate (NAADP)-mediated Ca2+ release from acidic intracellular 

endolysosomal stores [4]. TPC1 and TPC2 appear to have distinct gating mechanisms and 

have been reported to play differential roles in a variety of cell types and signaling pathways 

[4,5]. Despite the reported role of TPC1 in cell cycle regulation in a HEK293 overexpression 

model [6], and the role of TPC2, but not TPC1, in angiogenesis-associated signaling 

pathways [7], these channels have not been assessed in detail in breast cancer cell lines. 

However, evidence from studies in HER2 positive SKBR3 cells do suggest functional TPC 

channels in this breast cancer cell line [8]. 

 

Breast cancer is characterized by diversity at the prognostic, clinical and molecular level [9]. 

The triple negative breast cancer subtype, which overlaps largely with the basal molecular 

subtype, suffers from a lack of molecularly targeted therapies [9]. A number of triple 

negative breast cancer cell lines (such as MDA-MB-468 cells) have been used as in vitro 
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models for this subtype.  MDA-MB-468 cells belong to the related basal A cell line subgroup 

[10] and with appropriate stimuli, such as epidermal growth factor (EGF), can undergo an 

epithelial-mesenchymal transition (EMT), which is associated with a loss of epithelial 

markers such as E-cadherin and the gain of mesenchymal markers such as vimentin [11]. 

Recently, calcium signaling and specific Ca2+ permeable ion channels have been shown to be 

regulators of EGF-induced vimentin expression in MDA-MB-468 breast cancer cells [12]. 

 

In this study we sought to determine if TPC1 and TPC2 were present in tumorigenic and non-

tumorigenic breast cell lines. We also assessed the consequences of TPC1 and TPC2 

silencing on the proliferation of MDA-MB-468 breast cancer cells, EGF-induced changes in 

the expression of vimentin and E-cadherin, and phosphorylation of STAT3. Finally, in light 

of recent evidence suggesting differential selectivity of TPC1 and TPC2 for Ca2+ ions 

[4,13,14], we assessed the consequences of channel silencing on calcium influx in the MDA-

MB-468 cell line.   

 

2. Materials and Methods  

 

2.1 Cell culture 

Human MDA-MB-468 and MDA-MB-231 breast cancer cells were cultured in high glucose 

DMEM (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal bovine serum 

(FBS; Sigma-Aldrich) and L-glutamine (4 mM; Life Technologies, Carlsbad, CA, USA), and 

maintained in a humidified incubator at 37°C with 5% CO2. Cells consistently tested negative 

for mycoplasma infection (screened 6-monthly) using the MycoAlert Mycoplasma Detection 

Kit (Lonza Inc., Basel, Switzerland). For EMT studies, MDA-MB-468 cells were serum 

reduced (0.5% FBS) for 24 h prior to stimulation with EGF (50 ng/mL; E9644, Sigma-
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Aldrich) for the indicated time, as previously described [12], with the following changes: for 

EGF-stimulation protocols lasting greater than 48 h, media was replaced with fresh EGF after 

48 h. 

 

2.2 siRNA transfection 

siRNA-mediated gene silencing studies were performed using DharmaFECT4 Transfection 

Reagent and Dharmacon ON-TARGETplus SMARTpool siRNAs at a final concentration of 

100 nM (Thermo Scientific, Waltham, MA, USA), following the manufacturer’s protocols 

and as previously described [12]. The following siRNAs were used in this study: TPCN1 

(siTPC1; L-010710-00-0005), TPCN2 (siTPC2; L-006508-00-0005) and non-targeting 

control (siNT; D-001810-10-05). 

 

2.3 Real time RT-PCR 

Real time RT-PCR was performed as previously described [12], with the following changes: 

for Figs. 1A & B mRNA was amplified using TaqMan Universal PCR Master Mix (4324018; 

Applied Biosystems, Carlsbad, CA, USA), while TaqMan Fast Universal PCR Master Mix 

(4352042; Applied Biosystems) was used for Figs. 2A & B. RNA was isolated 48 or 96 h 

post-siRNA transfection for gene silencing studies. The following TaqMan Gene Expression 

assays were used to assess mRNA levels: TPC1 (Hs00330542_m1), TPC2 

(Hs01552063_m1), and 18S rRNA (4319413E; Applied Biosystems). Fold change (mRNA) 

was calculated using the comparative Ct method with 18S rRNA used as the endogenous 

control [15].  
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2.4 Immunoblotting 

Immunoblotting was performed as previously described [12]. Briefly, protein was loaded into 

NuPage Novex 4-12% bis-tris gels (Invitrogen) and run under reducing and denaturing 

conditions. Following protein transfer, PVDF membranes were blocked and incubated with 

primary antibody. The following antibodies were purchased from Cell Signaling Technology 

(Danvers, MA, USA): antiphospho-STAT3 (9138), anti-STAT3 (9139) (both diluted 1:1000). 

Anti-vimentin antibody (V6389) was purchased from Sigma-Aldrich (diluted 1:750). 

Membranes were then washed and probed with anti-mouse HRP-conjugated secondary 

antibody (170–6516, Bio-Rad Hercules, CA, USA) (diluted 1:10 000). Chemiluminescence 

imaging was performed using a Versadoc Imaging System (Bio-Rad). β-actin (A5441; 

Sigma-Aldrich) served as a loading control, and phosphorylated protein expression was 

further normalized relative to total protein concentration. Protein volume analysis was 

performed using Quantity One Software (Bio-Rad) using the global background subtraction 

method as outlined in the user manual. 

 

2.5 Cell enumeration and S-phase analysis 

At 96 h post-siRNA transfection, cell enumeration and S-phase analysis were performed by 

5-ethynyl-2’-deoxyuridine (EdU) incorporation using the Click-iT® EdU Alexa Fluor 555 

Imaging Kit (Invitrogen, Carlsbad, CA, USA) as previously described [16]. Cells were 

imaged with a 10X objective using an ImageXpress Micro automated epifluorescence 

microscope (Molecular Devices, Sunnyvale, CA, USA) using the following 

excitation/emission wavelengths: DAPI 377/447 nm and EdU 531/593. Normalized cell 

count and percent EdU positivity were determined using the Multi-wavelength cell scoring 

application module (MetaXpress v3.1.0.83; Molecular Devices).   
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2.6 Intracellular calcium measurements 

At 72 h post-siRNA transfection, measurement of cyclopiazonic acid (CPA)-mediated 

changes in store-operated calcium entry was performed using a fluorometric imaging plate 

reader (FLIPRTETRA; Molecular Devices) and the BD PBX no-wash calcium assay kit (BD 

Biosciences, Franklin Lakes, NJ, USA) as previously described [12].  

 

2.7 Statistical analysis 

Details of statistical analyses are provided in figure legends and were performed using 

GraphPad Prism version 6.05 for Windows.  

 

3. Results  

3.1 TPC isoform mRNA levels in a panel of breast cell lines 

TPC1 and TPC2 mRNA was detected in all tumorigenic and non-tumorigenic breast cell lines 

assessed. There was no clear trend for greater levels in tumorigenic breast cell lines compared 

to non-tumorigenic breast cell lines (184B5 and 184A1), or between subgroups such as 

luminal (MCF-7, T47D, ZR-75-1, BT-483), HER2 enriched (SKBR3) or basal/claudin low 

(MDA-MB-231, MDA-MB-468) [17,18] (Fig. 1). These results suggest that elevated TPC 

levels are not a defining characteristic of particular breast cancer cell line subgroups, which 

represent different breast cancer subtypes. 

 

3.2 Effect of TPC silencing on MDA-MB-468 breast cancer cell number 

To explore the potential role of TPC1 and TPC2 in a basal breast cancer cell line, TPC 

isoforms were selectively silenced in MDA-MB-468 breast cancer cells. TPC1 (Fig. 2A) and 

TPC2 (Fig. 2B) mRNA levels were effectively silenced at 48 h (>85%) and 96 h (>75%) 

post-siRNA transfection relative to the non-targeting siRNA control (siNT). At 96 h post 
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silencing, compensatory increases in the related isoform was observed (Fig. 2A and B). 

Silencing of TPC1 or TPC2 had no effect on cell number (Fig. 2C) or percentage of cells in 

S-phase (EdU positive) relative to the siNT control (Fig. 2D).    

  

3.3 TPC2 silencing attenuates EGF-induced vimentin expression in MDA-MB-468 cells 

The MDA-MB-468 breast cancer cell line is a commonly utilized in vitro model for the study 

of EMT in the context of defining responses to signals from the surrounding tumor 

microenvironment [11,19,20]. TPC2 but not TPC1 silencing significantly inhibited EGF-

induced vimentin expression relative to siNT in MDA-MB-468 cells (Fig. 3A). This effect 

was not due to a general inhibition of EMT induction since the suppression of E-cadherin 

expression by EGF was unaffected by TPC2 silencing (Fig. 3C). Inhibition of vimentin 

expression was specific to an induction pathway since TPC2 (like TPC1) silencing had no 

effect on the endogenous basal expression of vimentin protein in MDA-MB-231 breast 

cancer cells (Fig. 3B). However, effects of TPC2 on EGF-induced vimentin expression were 

not due to global suppression of EGF-induced signaling since TPC2 (like TPC1) silencing 

had no effect on activation of STAT3 by EGF (Fig. 3D). 

  

3.4 TPC isoform silencing differentially modulates calcium stores and/or store-operated 

calcium entry in MDA-MB-468 cells 

To assess the role of TPC isoforms in store-operated calcium entry, an important calcium 

influx pathway in epithelial cells [21], calcium stores of siRNA-transfected MDA-MB-468 

cells were depleted by CPA (10 µM) (an inhibitor of sarco/endoplasmic reticulum Ca2+-

ATPase channels) in order to activate plasma membrane localized store-operated channels 

(i.e. Orai1) (Fig. 4A & E). TPC1 silencing had no effect on CPA-induced calcium store 

release (peak 1) measured as change in relative cytosolic calcium (Fig. 4B) whereas TPC2 
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silencing resulted in significantly reduced CPA-induced calcium store release (Fig. 4F). 

TPC1 and TPC2 silencing also had opposing effects on store-operated calcium influx (peak 

2), observed through the re-addition of extracellular calcium (1.8 mM). TPC1 (Fig. 4C) 

modestly but significantly increased Ca2+ influx whereas TPC2 (Fig. 4G) silencing decreased 

Ca2+ influx associated with CPA-induced store depletion. These effects may be due in part to 

changes in CPA-induced depletion since the ratio of peak 2 to peak 1 (a measure of store-

operated Ca2+ entry) were not significantly altered by TPC1 or TPC2 silencing (Fig. 4D & 

H).  

 

4. Discussion  

These studies represent the first detailed assessment of TPC channels in breast cancer cells. 

Tumorigenic and non-tumorigenic breast cell lines had similar levels of TPC1 and TPC2 

mRNA. Unlike other ion channels, such as Orai1 [22], elevated levels of TPC channel 

mRNA does not seem to be a feature of breast cancer cells. Likewise, alterations in TPC1 and 

TPC2 mRNA were not a feature of a particular breast cancer cell molecular subtype. The 

similar levels of TPC1 and TPC2 among breast cell lines may be reflective of the diverse 

tissue distribution of these channels [23,24] and of important roles in epithelial cells. 

Assessment of the consequences of selective TPC isoform silencing in MDA-MB-468 breast 

cancer cells suggest some degree of gradual compensation between these isoforms, with 

TPC1 up-regulation following TPC2 silencing and vice versa at 96 h post knock-down. 

Unlike previous studies that show a role for TPC isoforms in cell cycle regulation when 

overexpressed in HEK293 cells [6], silencing of endogenous TPC expression had no effect 

on MDA-MB-468 cell proliferation, highlighting differences between endogenous and 

overexpressing systems.    
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The results presented here provide further evidence for specific and differential roles for TPC 

isoforms in the same cell type. TPC2 but not TPC1 silencing reduced EGF-induced vimentin 

expression in MDA-MB-468 breast cancer cells. TPC1 and TPC2 silencing also had different 

effects on CPA-mediated changes in [Ca2+]CYT. The gating and permeability of TPC1 and 

TPC2 vary [4] and examples of differential roles are also reflected in the effects of TPC 

isoform silencing on endomembrane dynamics [5],  effects of overexpression on multi-

nucleation [6], and roles on local and global Ca2+ signals [25]. In light of previous studies 

indicating a role for TPC2 in store-operated calcium entry [26], future studies assessing the 

mechanism by which TPC2 remodels CPA-induced changes in [Ca2+]CYT in this model are 

required, particularly in the context of calcium induced Ca2+ release [27]. 

 

The ability of TPC2 but not TPC1 to attenuate EGF-induced vimentin expression could have 

arisen from effects on EGF receptor trafficking given results of studies in TPC2 null mice 

[28].  However, this is unlikely given that EGF-mediated STAT3 activation was unaffected 

by TPC2 silencing in MDA-MB-468 breast cancer cells. Recent studies have identified the 

ability of JAK Inhibitor I to suppress EGF-induced vimentin expression in MDA-MB-468 

cells at concentrations that do not reduce EGF-activation of STAT3. Indeed, like TPC2 

silencing, JAK Inhibitor I does not reduce basal vimentin levels in MDA-MB-231 cells [29]. 

Future studies should now explore the potential association between TPC2 and the Janus 

kinase (JAK) signaling pathway in MDA-MB-468 cells. Despite the role of the Ca2+ signal in 

EMT induction and our report of effects of TPC2 silencing on the expression of the 

mesenchymal marker vimentin, TPC2 is clearly not a regulator of EMT induction, given that 

EGF-mediated changes in E-cadherin were not affected by TPC2 silencing [12]. 
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In summary, these studies provide further evidence for the ability of TPC1 and TPC2 to 

differentially regulate pathways in the same cell type and begin to define the role of these 

recently identified ion channels in breast cancer cells, including shaping responses to tumor 

micro-environmental factors such as EGF. 
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Figures/Figure legends 

 

Fig. 1. Relative mRNA levels of TPC isoforms in a panel of human breast cell lines. (A) 

TPC1 and (B) TPC2 mRNA levels in non-tumorigenic and tumorigenic breast cell lines were 

assessed using real time RT-PCR. Data were normalized to 18S rRNA and are expressed as 

fold-change relative to 184B5 cells. Bar graphs represent the mean ± S.D. for six wells from 

two independent experiments. 

 

Fig. 2. Effect of TPC1 or TPC2 silencing on MDA-MB-468 cell proliferation. Efficient 

siRNA-mediated silencing of (A) TPC1 or (B) TPC2 was shown at both 48 h (>85 %) and 96 

h (>75%). Bar graphs show percent TPC1 or TPC2 mRNA remaining relative to the non-

targeting control (siNT), and represent the mean ±SD from three independent experiments. 

Statistical analysis was performed using two-way ANOVA with Dunnett’s multiple 

comparisons test. The effect of TPC1 or TPC2 silencing on cell proliferation was assessed via 

(C) cell enumeration, shown relative to siNT, and (D) percentage S-phase (EdU positivity). 

Bar graphs represent the mean ±SD from three independent experiments. Statistical analysis 

was performed using one-way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05. 

 

Fig. 3. TPC silencing in MDA-MB-468 and MDA-MB-231 breast cancer cells. The effect of 

TPC1 and TPC2 silencing on (A) Vimentin, (C) E-Cadherin and (D) STAT3 phosphorylation 

in MDA-MB-468 cells stimulated with EGF (50 ng/mL) for different times, and (B) basal 

vimentin protein expression in MDA-MB-231 cells at 72 h post knock down, was assessed 

using immunoblotting. (i) Representative blot and (ii) relative protein expression quantified 

from three independent experiments. MDA-MB-231 and MCF-7 protein lysates served as 

positive or negative controls in A(i) and C(i). Statistical analysis was performed using two-
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way ANOVA (A), (C) and (D) or one-way ANOVA (B) with Tukey’s multiple comparisons 

test. *P < 0.05, ns = not significant.  

 

Fig. 4. Effect of TPC1 or TPC2 silencing on store-operated calcium entry in MDA-MB-468 

cells. Calcium stores were depleted with cyclopiazonic acid (10 µM) in the presence of 

BAPTA (500 µM) (peak 1), resulting in activation of store-operated calcium entry channels 

and calcium influx upon addition of Ca2+ (1.8 mM) (peak 2). Calcium traces represent mean 

change (Δ) in relative [Ca2+]CYT in the presence of (A) TPC1 or (E) TPC2 silencing. Bar 

graphs show the mean ±SD for (B) & (F) peak 1 and (C) & (G) peak 2 relative [Ca2+]CYT,  

and (D) & (H) the ratio of peak 1 to peak 2 in the presence of TPC1 or TPC2 silencing. Data 

is representative of three independent experiments. Statistical analysis was performed using 

unpaired, two-tailed t test. *P < 0.05. 

 

 



	 16	

 

 



	 17	

 

 



	 18	

 


