24 research outputs found

    The vascular integrity of the brain in chronic neurodegeneration

    Get PDF

    The blood-brain barrier studied in vitro across species

    Get PDF
    The blood-brain barrier (BBB) is formed by brain capillary endothelial cells (BECs) supported by pericytes and astrocytes. The BBB maintains homeostasis and protects the brain against toxic substances circulating in the blood, meaning that only a few drugs can pass the BBB. Thus, for drug screening, understanding cell interactions, and pathology, in vitro BBB models have been developed using BECs from various animal sources. When comparing models of different species, differences exist especially in regards to the transendothelial electrical resistance (TEER). Thus, we compared primary mice, rat, and porcine BECs (mBECs, rBECs, and pBECs) cultured in mono- and co-culture with astrocytes, to identify species-dependent differences that could explain the variations in TEER and aid to the selection of models for future BBB studies. The BBB models based on primary mBECs, rBECs, and pBECs were evaluated and compared in regards to major BBB characteristics. The barrier integrity was evaluated by the expression of tight junction proteins and measurements of TEER and apparent permeability (Papp). Additionally, the cell size, the functionality of the P-glycoprotein (P-gp) efflux transporter, and the expression of the transferrin receptor were evaluated and compared. Expression and organization of tight junction proteins were in all three species influenced by co-culturing, supporting the findings, that TEER increases after co-culturing with astrocytes. All models had functional polarised P-gp efflux transporters and expressed the transferrin receptor. The most interesting discovery was that even though the pBECs had higher TEER than rBECs and mBECs, the Papp did not show the same variation between species, which could be explained by a significantly larger cell size of pBECs. In conclusion, our results imply that the choice of species for a given BBB study should be defined from its purpose, instead of aiming to reach the highest TEER, as the models studied here revealed similar BBB properties

    Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties

    Get PDF
    BACKGROUND: Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood–brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells’ integrity. METHODS: Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. RESULTS: The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly, transfection of BCECs exhibiting BBB characteristics did not alter the integrity of the BCECs cell layer. CONCLUSIONS: The data clearly indicate that non-viral gene therapy of BCECs is possible in primary culture conditions with an intact BBB

    Blood-Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles

    Get PDF
    The blood–brain barrier (BBB), built by brain endothelial cells (BECs), is impermeable to biologics. Liposomes and other nanoparticles are good candidates for the delivery of biologics across the BECs, as they can encapsulate numerous molecules of interest in an omnipotent manner. The liposomes need attachment of a targeting molecule, as BECs unfortunately are virtually incapable of uptake of non-targeted liposomes from the circulation. Experiments of independent research groups have qualified antibodies targeting the transferrin receptor as superior for targeted delivery of nanoparticles to BECs. Functionalization of nanoparticles via conjugation with anti-transferrin receptor antibodies leads to nanoparticle uptake by endothelial cells of both brain capillaries and post-capillary venules. Reducing the density of transferrin receptor-targeted antibodies conjugated to liposomes limits uptake in BECs. Opposing the transport of nanoparticles conjugated to high-affine anti-transferrin receptor antibodies, lowering the affinity of the targeting antibodies or implementing monovalent antibodies increase uptake by BECs and allows for further transport across the BBB. The novel demonstration of transport of targeted liposomes in post-capillary venules from blood to the brain is interesting and clearly warrants further mechanistic pursuit. The recent evidence for passing targeted nanoparticles through the BBB shows great promise for future drug delivery of biologics to the brain

    Potential Retinal Biomarkers in Alzheimer's Disease

    Get PDF
    Alzheimer’s disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination

    Mutation of Tyrosine Sites in the Human Alpha-Synuclein Gene Induces Neurotoxicity in Transgenic Mice with Soluble Alpha-Synuclein Oligomer Formation

    Get PDF
    Overexpression of α-synuclein with tyrosine mutated to phenylalanine at position 125 leads to a severe phenotype with motor impairment and neuropathology in Drosophila. Here, we hypothesized that tyrosine mutations would similarly lead to impaired motor performance with neuropathology in a rodent model. In transgenic mice (ASO), tyrosines at positions 125, 133, and 136 in human α-synuclein were mutated to phenylalanine and cloned into a Thy1.2 expression vector, which was used to create transgenic mouse lines on a mixed genetic background TgN(Thy-1-SNCA-YF)4Emfu (YF). The YF mice had a decreased lifespan and displayed a dramatic motor phenotype with paralysis of both hind- and forelegs. Post-translational modification of α-synuclein due to phosphorylation of serine 129 is often seen in inclusions in the brains of patients with α-synucleinopathies. We observed a slight but significant increase in phosphorylation of serine 129 in the cytosol in YF mice compared to age-matched human α-synuclein transgenic mice (ASO). Conversely, significantly decreased phosphorylation of serine 129 was seen in synaptosomes of YF mice that also contained higher amounts of soluble oligomers. YF mice deposited full-length α-synuclein aggregates in neurons widespread in the CNS with the main occurrence in the forebrain structures of the cerebral cortex, the basal ganglia, and limbic structures. Full-length α-synuclein labeling was also prominent in many nuclear regions of the brain stem, deep cerebellar nuclei, and cerebellar cortex. The study shows that the substitution of tyrosines to phenylalanine in α-synuclein at positions 125, 133, and 136 leads to severe toxicity in vivo. An insignificant change upon tyrosine substitution suggests that the phosphorylation of serine 129 is not the cause of the toxicity

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio
    corecore