85,648 research outputs found

    Public Reason and Precluded Reasons

    Get PDF

    Cutter and stripper reduces coaxial cable connection time

    Get PDF
    Consisting of three pivoted members, this hand cutter and stripper positions to cut shielding and insulation at the right distance and depth. Coaxial cable is prepared quickly and accurately for connector attachment

    A Survey of Composite Grid Generation for General Three-dimensional Sections

    Get PDF
    The generation and use of composite grids for general three-dimensional physical boundary configurations is discussed, and the availability of several codes or procedures is noted. With the composite framework, the physical region is segmented into sub-regions, each bounded by six curved sides, and a grid is generated in each sub-region. These grids may be joined at the interfaces between the sub-regions with various degrees of continuity. This structure allows codes to be constructed to operate on rectangular blocks in computational space, so that existing solution procedures can be readily incorporated in the construction of codes for general configurations. Numerical grid generation is an integral part of the numerical solution of partial differential equations and is one of the pacing items in the development of codes for general configurations. The numerically generated grid frees the computational simulation from restriction to certain boundary shapes and allows general codes to be written in which the boundary shape is specified simply by input. The numerically generated grid allows all computation to be done on a fixed square grid in the computational space, which is always rectangular by construction

    Numerical solution of the Navier-Stokes equations for arbitrary two-dimensional multi-element airfoils

    Get PDF
    Abstracts are presented on a method of numerical solution of the Navier-Stokes equation for the flow about arbitrary airfoils, using a numerically generated curvilinear coordinate system having a coordinate line coincident with the body contour. Results of continuing research are reported and include: application of the Navier-Stokes solution in the vorticity-stream function formulation to a number of single airfoils at Reynolds numbers up to 2000; programming of the Navier-Stokes solution for multiple airfoils in the primitive variable formulation; testing of the potential flow solution of multiple bodies; and development of a generalized coordinate system program

    Procedure for Determining Speed and Climbing Performance of Airships

    Get PDF
    The procedure for obtaining air-speed and rate-of-climb measurements in performance tests of airships is described. Two methods of obtaining speed measurements, one by means of instruments in the airship and the other by flight over a measured ground course, are explained. Instruments, their calibrations, necessary correction factors, observations, and calculations are detailed for each method, and also for the rate-of-climb tests. A method of correction for the effect on density of moist air and a description of other methods of speed course testing are appended

    Nonlinear Stochastic Dynamics of Complex Systems, II: Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

    Full text link
    In this paper we revisit the notion of the "minus logarithm of stationary probability" as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate function when a stochastic process approaches a deterministic limit. We then undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in a necessary and sufficient condition for the criticality of stochastic systems. This condition is then discussed in the context of recent results about criticality in biological systemsComment: 28 page

    Numerical solution of the Navier-Stokes equations for arbitrary 2-dimensional multi-element airfoils

    Get PDF
    Numerical solutions of the Navier-Stokes equations, with an algebraic turbulence model, for time-dependent two dimensional flow about multi-element airfoils were developed. Fundamental to these solutions was the use of numerically-generated boundary-conforming curvilinear coordinate systems to allow bodies of arbitrary shape to be treated. A general two dimensional grid generation code for multiple-body configuration was written as a part of this project and made available through the COSMIC code library

    Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies

    Get PDF
    A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated

    A modified R1 X R1 method for helioseismic rotation inversions

    Full text link
    We present an efficient method for two dimensional inversions for the solar rotation rate using the Subtractive Optimally Localized Averages (SOLA) method and a modification of the R1 X R1 technique proposed by Sekii (1993). The SOLA method is based on explicit construction of averaging kernels similar to the Backus-Gilbert method. The versatility and reliability of the SOLA method in reproducing a target form for the averaging kernel, in combination with the idea of the R1 X R1 decomposition, results in a computationally very efficient inversion algorithm. This is particularly important for full 2-D inversions of helioseismic data in which the number of modes runs into at least tens of thousands.Comment: 12 pages, Plain TeX + epsf.tex + mn.te
    corecore