NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NUMERICAL SOLUTION OF POTENTIAL

FLOW ABOUT ARBITRARY

T. \boldsymbol{O} DIMENSIONAL MULTIPLE BODIES

ENGINEERING E INDUSTRIAL RESEARCH STATIQN
Aeruspace Engineering

aULTAELE EOLIES (NASA) 100 , IC AUS/MF AOI
CSEL LuN Gjos Jactas
Joe F. Thompson
and
Frank C. Thames

Numerical Solution of Potential Flow About Arbitrary Two-Dimensional Multiple Bodies*

Joe F. Thompson and Frank C. Thames ${ }^{+}$

Department of Aerospace Engineering Mississippi State University Mitsiessippi State, Mississippi 39762

[^0]
Table of Con'cents

Page
Abstract 3
I. INTRODUCTION 4
II. BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEM 7
A. Mathematical Construction 7
B. Numerical Implementation 10
III. POTENTIAL FLOW SOLUTION 13
A. Laplace Equat: n 13
B. Velocity 14
C. Kutta Condition 15
D. Superposition of Solutions 16
E. Surface Pressure and Force Coefficients 18
F. Multiple Airfoils 18
IV. EFFECT OF NUMERICAL PARAMETER'S 21
A. Effect of Point Distribution on Airfoil Contour 22
B. Effect of Number of Lines Surrounding the Body 25
C. Effect of Location of Outer Boundary 25
D. Effect of Order of Extrapolation Used in Kutta Condition 26
E. Effect of Order of Velocity Difference Expression Used in Kutta Condition 26
F. Effect of Order of Velocity Difference Expression Used In Pressure Calculation 26
G. Effect of Order of Pressure Integration 27
H. Recommended Values 27
V. MULTIPLE-BODY SOLUTIONS 29
VI. CONCLUSION 33
APPENDIX--DERIVATIVES AND VECTORS IN THE TRANSFORMED PLANE 34
REFERENCES 37

Abstract

A procedure for the finite-difference numerical solution of the lifcing potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordiate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The paper server also to illustrate the technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations.

I. INTRODUCTION

Numerical incompressible potential flow solutions for bodies of arbitrary shape have generally fallen into three categories: .
(1) Integral equation methods, whereby various singular solutions of Lapiace's equation are superposed to construct a solution satisfying the boundary conditions of the particular problem of interest. This type of approach is represented by the work in references 1-8. In these methods singular solutions of Laplace's equation are distributed on the body surface, and perhaps also in its interior, with the body surface represented by quadralateral or triangular panels. The strengths of the singularjifes are then determined such that the superposition of the onset velocity field and that induced by the totality of the singularities satisfies the condition of vanishing normal velocity at the body surface at certain points.

This approach has been carried to a high degree of refinement and is presently capable of treating the flow about multiple bodies of arbitrary shape. This procedure obviates calculation in the entire flow field and involves instead the solution of a matrix equation of order equal to the number of points of application of the boundary condition on the bodies. The primary output is the surface pressure distribution on the bodis:s and the resulting aerodynamic coefficients. The velocity field can also be obtained, but this requires the evaluation of the velocity at each point in the field from a sumation over all the singularities involved-a time consuming process. The determination of streamlines, or equivalenty the stream function, from the velocity field is still another numerical problem itself.
(2) Finite element merhods, as represented by references 9-11. Here the calculation is carried out in the entire flow fleld, the field being divided into finite elements. The flow solution is obtained by applying an integral variational principle, or ocher integral relations, over the aggregate of elements, which leads to matrix solution of order equal to the total number of elements in the field. The solution is thus obtained In the entire flow field. However, not all derivatives can be made continuous across the boundaries between the various elements.
(3) Conformal transformation, whereby the field is transformed to one of simple geometry on which the solution is known (two-dimensional flow only). The classic Theodorsen method [12] is one of this type. A comparative discussion of earlier applications of this and other procedures is given In [1]. Recently Ives [13] has extended this approach to multiple jodies.

Finite difference solutions have been severely hindered in the pas:by the problem of fitting curved boundaries into the computational grid. The use of interpolation between grid points to represent boundary conditions on a curved boundary passing through a rectangular grid may lead to poor application of the boundary conditions. Since finite difference solutions depend on continuity of derivatives, the distribution of points at will in the field leads to difference expressions involving large numbers of points, loss of repeat patterns over the fieid, and hence unreasonably complex computer codes.

However, if a curvilinear coordinate system with coordinate lines coincident with the field boundaries can be found, these problems vanish, and the finite difference approach can give very smooth solutions that do
not lack continuity of derivatives. The potential flow solution reported herein is based on just such an approach.

The present finite-difference potential flow solution utilizes a method of automatic numerical generation of a general boundary-fitted curvilinear coordinate system having coordinate lines coincident with all boundaries of a general multi-connected region containing any number of arbitrarily shaped bodies, whic: has been redorted earlier (Ref. 14-16). The curvilinear coordinates are generated as the solutions of an elliptic partial differential system with Dirichlet boundary conditions, one coordinate being specified to be constant on each of the boundaries, and a distribution of the other being specifled along the boundaries. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the method is not restricted to single bodies or, in principle, to two dimensions. Coordinate lines may je concentrated as desired along the boundaries. Procedures have also been developed to control the coordinate line spacing in the field by varying the generating ellipicic system.

Regardless of the number or shapes of the bodies and regardless of the spacing of the curvilinear coordinate lines, all numerical computations, both to generate the coordinate system and to subsequently solve the Laplace equation for the stream function are done on a rectangular grid with a square mesh, i.e., in the transformed plane. Although not necessary in the present application, it is also possible to cause the boundary-fitted coordinate system to change in time however desired and still have all computation done on the fixed rectangular grid with square mesh [17]. This allows the curvilinear coordinate system in the physical plane to
deform with a deformini body, free surface, or any other boundary, keeping a coordinate line always coincidenz with the boundary at all times. The physical coordinate system has been, in effect, eliminated from the problem, at the expense of adding two elliptic equations to the original system. Since the curvilinear coordinate system has coordinate lines coincident with the surface contours of all bodies present, all boundary conditions may be expressed at grid points, and normal derivatives on the bodies may be represented using caly finite differences between grid points on coordinate lines, without need of any interpolation, even though the coordinate system is not orthogonal at the boundary. With this method of boundary-fitted coordinate system generation, the treatment of fields with complex boundaries and any number of bodies is not inherently more difficult than problems with simple geometry.

This use of numerically-generated boundary-fitted coordinate systems is not peculiar to the present application to potential flow, but rather is applicable to the numerical solution of any partial differential system. Other applications presently under consideration include viscous incompressible and compressible flow, free surface flows, turbulent flows, and solid mechanics problems. Some examples of such applications are given in Ref. 17-20. Documentation of the coordinate system generation procedure and computer program are given in Ref. 18 and 19. The procedure is briefly summarized in the next section. The present paper serves also to illustrate the technique of application of the boundary-fitted coordinate systems in the numerical solution of partial differential equations.

II. BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEM

A. Machematical Construction

Let it be desired to tcansform the two-dimensional, doubly-connected region, D, bounded by two closed contours of arbitrary shape into a rectangular region, D^{*}, as shown in Fig. 1. The generai transformation from $\xi=\xi(x, y), \eta=\eta(x, y)$. Since the basic idea of the tranaformation is to generate transformation functions such that all boundaries are coincident with coordinate lines, the curvilinear coordinates (ξ, n) are taken as solutions of some suitable elliptic boundary value problem with one of these coordinates constant on the boundaries. The choice of a suitable elliptic system is restricted somewhat by the need for certain maximum principles as discussed in Ref. 18. The system given below allows considerable control to be exercized over the spacing of the curvilinear coordinate lines in the field:

$$
\begin{align*}
& \xi_{x x}+\xi_{y y}=P(\xi, n) \tag{1a}\\
& \eta_{x x}+\eta_{y y}=Q(\xi, n) \tag{lb}
\end{align*}
$$

with Dirichlet boundary conditions, $\eta=$ constant η_{1} on $r_{1}, \eta=$ constant $=\eta_{2}$ on $\Gamma_{2} ; \xi(x, y)$ e multipie valued solution with a branch or $\xi(x, y)$ specified (but not constant) on Γ_{1} and Γ_{2}. The curve Γ_{1} on the physical plane transforms to the lower boundary, Γ_{1}^{*}, of the transformed plane. Similarly, Γ_{2} transforms to Γ_{2}^{*}, etc. The right and left. boundaries of the sectangular transformed plane, Γ_{3}^{*} and Γ_{4}^{*}, are coincident in the physical plane. The curve which transforms to these boundaries connects Γ_{I} and r_{2} and determines a branch cut for the multiple valued function $\xi(x, y)$. Thus the functions and all derivatives are continuous across this cut. The inhomogeneous functions $P(\xi, \eta)$ and $Q(\xi, \eta)$ are sums of decaying exponentials that allow coordinate lines to be attracted to specified lines and/or points in the field or on the boundaries as discussed in more detail in Ref. 17-19. These functions, along with the derivative transformation relations are given in the appendix.

Now since it is desired to do all numertcal computation in the rectangular transformed plane, it is necessary to interchange the dependent and independent variables in (1). Thus using the relations from the appendix,

$$
\begin{align*}
& a x_{\xi \xi}-2 B x_{\xi \eta}+\gamma x_{\eta \eta}=-J^{2}\left(x_{\xi} P(\xi, \eta)+x_{\eta} Q(\xi, \eta)\right) . \tag{2a}\\
& a y_{\xi \xi}-2 B y_{\xi n}+r y_{\eta \eta}=-J^{2}\left(y_{\xi} P(\xi, n)+y_{\eta} Q(\xi, \eta)\right) \tag{2b}
\end{align*}
$$

where

$$
\begin{array}{ll}
a=x_{\eta}^{2}+y_{\eta}^{2} & y=x_{\xi}^{2}+y_{\xi}^{2} \\
B=x_{\xi} x_{\eta}+y_{\xi} y_{\eta} & J=x_{\xi} y_{\eta}-x_{\eta} y_{\xi}
\end{array}
$$

with the trausformed boundary conditions, $x=\xi_{1}\left(\xi, \eta_{1}\right)$ on $\Gamma_{1}^{*}, y=g_{2}\left(\xi, \eta_{1}\right)$ on $\Gamma_{1}^{\star}, x=f_{2}\left(\xi, \eta_{2}\right)$ on $\Gamma_{2}, y=g_{2}\left(\xi, \eta_{2}\right)$ on Γ_{2}. (In the present application, x and y are ncadimensionalized with respect to the airfoil chord.;

The curvilinear coordinate system so generated has a constant n-line coincident with each boundary in the physical plane. The $\xi-1$ ines may be spaced in any manner desired around the buundaries by specification of the ξ boundary conditions, or equivalently by specification of (x, y) at the equi-spaced ξ-points on the η_{1} and η_{2} lines of the transformed plane. Control of the spacing of the $n-1$ ines may be exercised by varying the attraction parameters in the functions $P(\xi, \eta)$ and $Q(\xi, \eta)$ of Eq. (2) as discussed in Ref. 18 and 19.

The same procedure for boundary-fitted coordinate generation may be applied to regions that are more than doubly connected, l.e., have more than two closed boundaries or, equivalently, more than one body or hole within a single outer boundary. One possible transformation to the rectangular field for any number of bodies is illustrated in Fig. 2. Here the n-coordinate is required to be equal to the same constant on all the interior boundaries, i.e., on all bodias in the field. Let all the bodies be connected by arbitrary cuts and, similarly, one body be connected to the outer boundary by an arbitrary cut. Since the n-coordinate is equal
to the same constant on all the bodies, it is, of course, equal to that constant on the cuts between the bodies also. By contrast, the g-coordinate is taken constanf, on the cut between one body ain the outer boundary. Since the locations of these cuts are not specified, the specification of n or ξ as constar: on a cut does not oversperify the elliptic problem.

Note that all bodies except one are split into two segments. Each cut appears twice on the transformed field youndary of course, the two segments corresponding to the two "sides" of the cut in the physical plane and thus being re-entrant boundaries with the functions of all derivatives continuous thereon. Thus, x and y are specified on the portions of the lower boundary of the transformed field that corresponds to the bodies, and also on the entire upper boundary, corresponding to the outer boundary in the physical field. The : maining portions of the lower boundary and the entire side boundaries are re-entiant boundaries, and thus neither require nor allow specification of (x, y) thereon. Other arrangements are also possible as discussed in decail in Ref. 18 and i9, two of which are used below.

Again the elliptic Dirichlet problem (2) is solved to generate the boundary-fitted coordinates (ξ, η). All computation, both to generate the coordinates and subsequently to solve the partial differential system of interest, are again done on the rectangular field with square mesh in the transformed plane.
B. Numerical Implementation

The transformed field for a single airfoil. is illustrated in Fig. 3a. The phystcal coordinates of I points describing the body surface, (x, y), provide the boundary conditions along the $\mathrm{J}=1$ line, and those of I points on the physical remote boundary, usually a circle of radius ten or
axire chords, supply the boundary conditions along the $j=J$ line of the transformed field. Since the aide boundaries of the transformed field are re-entrant, corresponding to the cut in the physical plane, we have $f_{1, j}=$ $f_{1, j}$ and $f_{I+1, j}=f_{2}, j$ for all j. Note that the values of x and y are rot apecified on these ide boundaries. All derivatives in (2) are approximated by second-order central difference expressions ($\Delta \xi$ and $\Delta \eta$ are both unity by consiruction, the actual values of ξ and n being immaterial since cancellation occurs after substitution in the transformed equations.):

$$
\begin{gather*}
\left(f_{\xi}\right)_{i j}=\frac{1}{2}\left(f_{1+1, j}-f_{1-1, j}\right) \tag{3a}\\
\left(f_{n}\right)_{1 j}=\frac{1}{2}\left(f_{1, j+1}-f_{i, j-1}\right) \tag{3b}\\
\left(f_{\xi \xi}\right)_{i j}=f_{i+1, j}-2 f_{i j}+f_{i-1, j} \tag{3c}\\
\left(f_{\eta \eta}\right)_{1 j}=f_{i, j+1}-2 f_{i j}+f_{i, j-1} . \tag{3d}\\
\left(f_{\xi \eta}\right)_{i j}=\frac{1}{4}\left(f_{i+1, j+1}-f_{i+1, j-1}-f_{i-1, j+1}+f_{i-1, j-1}\right) \tag{3e}
\end{gather*}
$$

The resulting set of $2 I(J-1)$ nonlinear difference equations, two for each point ($1, \mathrm{j}$) for $1=1,2,--, I-1$ and $J=2,3,--, J-1$, are solved by accelerated Gauss-Seidel (SOR) iteration using overrelaxation. The iteration $: s$ considered to have converged when the maximum absolute change on the field between iferates is less than a specified value. A range of acceleration parameters was examined, and a value of 1.85 was nearly optimum for the airfoils considered. After conveigence of the solution of (2), the values of the coefficients α, B, Y, J, at each point of the field are stored for use in the solution of the stream function equation.

The transformed field for two airfoils is illustrated in Fig. 3b. The physical coordinates of body \#2 at points $1=1---I 1$, those of body $\| 1$ at points $1=12--13$, and finally the remaining points $1=14---1$ on body
*2 ars input as boundary conditions on the f a line in the transformed plane. The remaining points, $1=(11+1)--(I 2-1)$ and $1=(13+1)-\ldots$ (I4-1), on the $f=1$ line are re-entrant points corresponding to the cut between the todies in the physical plane. Therefore values at these points are not specified, but rather the relations $f_{I 1}+k, 1=f_{4}-k, 1$ and $f_{I I}+k, 0=\mathcal{I}_{14}-k, 2$ for $k=1--(I 2-I I-1)$ hold. The rest of the procedure is unchanged from the case of a single airfoil, except that twu Jifference equations at each of the points (i, 1) for $1=(I 1+1)-\infty-(I 2-$ i) are added to the system, so that the to':al number of equations is now $2 I(J-1)+2(I 2-I 1-1)$.

III. POTENTIAL FLOW SOLUTION

A. Laplace Equation

The two-dimensional irrotational हlow about any number of bodies may be described by the Laplace equation for the stream function, ψ :

$$
\begin{equation*}
\psi_{x x}+\psi_{y y}=0 \tag{4}
\end{equation*}
$$

with boundary conditions

$$
\begin{align*}
& \psi(x, y)=\text { constant on each body } \tag{5a}\\
& \psi(x, y)=y \cos \theta-x \operatorname{atn} \theta \text { at infinity } \tag{5b}
\end{align*}
$$

where θ is the angle of attack $\rightarrow f$ the free stream relative to the positive x-axis. Here the stream function is nondimensionalized relative to the airfoil chord and the frez stream velocity. When transformed to the curvilinear coordinate system this equation becomes (see appendix)

$$
\begin{equation*}
a \psi_{\xi \xi}-2 B \psi_{\xi \eta}+\gamma \psi_{\eta \eta}+J^{2}\left[Q(\xi, \eta) \psi_{i}+P(\xi, \eta) \psi_{\xi}\right]=0 \tag{6}
\end{equation*}
$$

where α, β, γ, and J are given above, and the trausformed boundary conditions are, for a single body,

$$
\begin{align*}
& \left.\psi(\xi, n)=\psi_{0} \text { on } n=\eta_{1} \text { (i.e., on } \Gamma_{1}\right) \tag{7a}\\
& \psi(\xi, n)=y\left(\xi, n_{2}\right) \cos \theta-x\left(\xi, n_{2}\right) \sin \theta \text { on } n=\eta_{2}\left(i . e ., \text { on } \Gamma_{2}^{*}\right) \tag{7b}
\end{align*}
$$

The uniqueness is implied by requiring that the solution be periodic in $-\infty<\xi<\infty, \eta_{1} \leq \eta \leq \eta_{2} . a, B, \gamma$, and J are calculated during the generation of the coordinate system. Equation (6) is approximated using secondorder, central differences for all derivatives, and the resulting difference equation is solved by accelerated Gauss-Seidel (SOR) iteration on the rectangula: transformed field.

The solution of (6) on the transformed field is constructed in the same manner that has been previously described for the solut a of (2). The single equation (6) replaces the two equations (2a) and (2b), and the boundary conditions are given by (7). The total number of difference equations thus is $I(J-1)$ for a single airfoil and $I(J-1)+(12-I 1-1)$ for two alrfoils.

B. Velocity

The velocity components are calculated from the equations $u=\psi_{y}$, $v=-\psi_{x}$, which in the transformed plane become, from the appendix,

$$
\begin{align*}
& u=\left(x_{\xi} \psi_{\eta}-x_{\eta} \psi_{\xi}\right) / J \tag{8a}\\
& v=\left(y_{\xi} \psi_{\eta}-y_{\eta} \psi_{\xi}\right) / J \tag{8b}
\end{align*}
$$

Velocities in the interior of the field may be obtained from these relations using second-order, central difference expressions for all derivatives as given by Eq. (3).

On the body surface, $\Psi_{\xi}=0$, so that these expressions reduce to $u=x_{\xi} \psi_{\eta} / J$ and $v=y_{\xi} \psi_{\eta} / J$. Also, the unit tangent vector the the body surface is given by (see appendix)

$$
\begin{equation*}
\tau=\left(\underset{\sim}{i x_{\xi}}+\underset{\sim}{j} y_{\xi}\right) / \sqrt{\gamma} \tag{9}
\end{equation*}
$$

Then the velocity component tangential to the surface is given by

$$
\begin{equation*}
v_{t}=\underline{v} \cdot \tau=\left(u x_{\xi}+v y_{\xi}\right) / \sqrt{r}=\frac{\sqrt{\gamma}}{J} \psi_{\eta} \tag{10}
\end{equation*}
$$

On the surface, the ξ-derivatives are approximated by the second-order, central difference expressions of Eq. (3a), as in the interior of the field, at all points except those on the cut, $i=1$ and $i=I$, where second order, one-sided expressicus are used. Thus

$$
\begin{align*}
& \left(f_{\xi}\right)_{1,1}=\frac{1}{2}\left(-f_{3,1}+4 f_{2,1}-3 f_{1,1}\right) \tag{11a}\\
& \left(f_{\xi}\right)_{I, 1}=\frac{1}{2}\left(f_{I-2,1}-4 f_{I-1,1}+3 f_{I, 1}\right) \tag{llb}
\end{align*}
$$

The n-derivatives on the surface are approximated at all points by onesided expressions. First, second, and third order expressions as follows were evaluated as discussed in the next section:

$$
\begin{align*}
& \left(f_{n}\right)_{1,1}=f_{i, 2}-f_{i, 1} \quad \text { (first order) } \tag{12a}\\
& \left(f_{n}\right)_{i, 1}=\frac{1}{2}\left(-f_{i, 3}+4 f_{i, 2}-3 f_{i, 1}\right) \quad \text { (second order) } \tag{12b}\\
& \left(f_{n}\right)_{1,1}=\frac{1}{6}\left(2 f_{i, 4}-9 f_{i, 3}+18 f_{i, 2}-11 f_{i, 1}\right) \quad \text { (third order) } \tag{12c}
\end{align*}
$$

C. Kutta Condition

The value of the bcundary value of ψ on the body, ψ_{0}, is determined by imposing the Kutta condition that the flow leave the sharp trailing edge of an airfoil smoothly. For a cusped trailing edge (zero included angle) this condition requires only that the velocity approach the same value at the trailing edge on the upper and lower surfaces of the airfoil. For a trailing edge with finite included angle it is required that the trailing edge be a stagnation point. It was found, however, that the requirement that the same limit be approached at the trailing edge on the upper and lower surfaces was superior numerically with both types of trailing edges. This limit condition was also applied by Giesing [1] as the Kutta condition with a finite trailing edge in the potential flow solution using superposition of singularities.

In the present solution the Kuita condition thus was applied by requiring that the value of the velocity component tangential to the body surface extrapolated at the trailing edge from neighboring points on the
upper surface be equal to that extrapolated from neighboring points on the lower surface. One, two, and three point extrapolations were evaluated, as well as the simple requirement that the velocity vanish at the trailing edge, These applications of the Kutta condition are as follows (Here superscript o refers to the trailing edge, and the other superscripts to successively distant neighboring points on the body surface as fllustrated in Fig. 4. These points are, of course, equi-spaced ir the transformed plane.):

$$
\begin{aligned}
v_{t}^{(1+)} & =v_{t}^{(0)}=v_{t}^{(1-)} \\
2 v_{t}^{(1+)}-v_{t}^{(2+)} & =v_{t}^{(0)}=2 v_{t}^{(1-)}-v_{t}^{(2-)} \quad \text { (first order) (13a) } \\
3 v_{t}^{(1+)}-3 v_{t}^{(2+)}+v_{t}^{(3+)} & =v_{t}^{(0)}=3 v_{t}^{(1-)}-3 v_{t}^{(2-)}+v_{t}^{(3-)} \text { (third order)(13c) }
\end{aligned}
$$

D. Superposition of Solutions

Since the system to be solved is linear in ψ, the solution for a single airfoil at any angle of attack may be obtained by superposing three component solutions: (1) a solution at 0° angle of attack with no circulation, (2) a solution at 90° angle of attack with no circulation, and (3) a solution with circulation but zero free stream velocity as jone by Giesing [1]. These three component solutions, written $\psi^{(i)}(\xi, \eta), i=1,2,3$, each satisfy Eq. (6), with the respective boundary conditions

$$
\begin{align*}
& \psi_{i, 1}^{(1)}=0, i=1--I \tag{14a}\\
& \psi_{i, J}^{(1)}=y_{i, J}, i=1--I \tag{14b}\\
& \psi_{i, 1}^{(2)}=0, i=1--I \tag{15a}
\end{align*}
$$

$$
\begin{align*}
& \psi_{1, J}^{(2)}=-x_{1, J}, 1=1---I \tag{15b}\\
& \psi_{1,1}^{(3)}=1,1=1---I \tag{16a}\\
& \psi_{1, J}^{(3)}=0,1=1---I \tag{16b}
\end{align*}
$$

The complete solution with arbitrary circulation then is

$$
\begin{equation*}
\psi(\xi, n ; \lambda)=\psi^{(1)}(\xi, n) \cos \theta+\psi^{(2)}(\xi, n) \sin \theta-\lambda \psi^{(3)}(\xi, n) \tag{17}
\end{equation*}
$$

The Kutia condition is then satisfied by choosing the coefficient λ such that the one of Eq. (13a) - (13c) being applied is satisfied, the tangential velocities being given by Eq. (10) with ψ from Eq. (17), using a one-sided difference expression analogous to Eq. (11) for the n-derivative.

Thus it is only necessary to solve the system of difference equations three times for a given airfoil. The solution at any angle of attack may then be obtained without re-solving the difference system.

E. Surface Pressure and Force Coefficients

The pressure coefficient at any point in the field may be obtained from the velocities via the Bernoulli equation, which in the present nondimensional variables is

$$
\begin{equation*}
c_{p}=1-|v|^{2} \tag{18}
\end{equation*}
$$

On the body surface this becomes, from (10),

$$
\begin{equation*}
C_{p}=1-\frac{Y}{J^{2}} \psi_{\eta}^{2} \tag{19}
\end{equation*}
$$

with the derivative evaluated by one of the difference expressions of (12).
The nondimensional force on the body is given by

$$
\begin{equation*}
F=-\oint C_{p} n d s \tag{20}
\end{equation*}
$$

where \mathfrak{n} is the unit outward normal to the surface, and ds is an increment of arc length along the surface. Since nds $=k x d r$, where r is the position vector of points on the surface and k is the unit normal to the two-dimensional plane, this becomes (see appendix)

$$
\underset{F}{F}=-\oint C_{p}\left(\underline{k} \times \frac{d \underline{\sim}}{d \xi}\right) d \xi=-\oint C_{p}\left(\underset{\sim}{f} x_{\xi}-\underline{\underline{E}} y_{\xi}\right) d \xi
$$

The unit vector in the direction of the free stream is $\underset{\sim}{a}=1 \cos \theta+\underset{\sim}{f} \sin \theta$, and that normal to the free stream is $k x a=\int \cos \theta-i \sin \theta$, so that 'he lift and drag coefficients are

$$
\begin{align*}
& C_{L}=\underset{\sim}{a}=\oint C_{p}\left(-x_{\xi} \cos \theta-y_{\xi} \sin \theta\right) d \xi \tag{21a}\\
& C_{D}=(\underline{k} \times \underset{\sim}{a}) \cdot \underset{F}{F}=\oint C_{p}\left(y_{\xi} \cos \theta-x_{\xi} \sin \theta\right) d \xi \tag{21b}
\end{align*}
$$

These integrals can be evaluated by numerical quadrature using either the trapezoidal rule or Simpson's rule, both of hich were evaluated during the course of the investigation. For the former we have

$$
\begin{equation*}
\oint f d \xi=\frac{1}{2}\left(f_{1,1}+f_{I, 1}\right)+\sum_{i=2}^{I-1} f_{1,1} \quad \text { (first order) } \tag{22a}
\end{equation*}
$$

while for the latter, with I odd,
$\oint f d \xi=\frac{1}{3}\left(f_{1,1}+f_{I, 1}\right)+\frac{4}{3}\left(f_{2,1}+f_{I-1,1}\right)+\frac{2}{3} \sum_{i=3}^{I-2} f_{i, 1} \quad$ (second order)

F. Multiple Airfoils

With two airfoils, the boundary condition of Eq. (5a) becomes

$$
\begin{align*}
& \psi(x, y)=\psi_{1} \text { on the surface of body } \# 1 \tag{23a}\\
& \psi(x, y)=\psi_{2} \text { on the surface of body } \# 2 \tag{23b}
\end{align*}
$$

With reference to Fig. $3 b$ and the discussion in the previous section on
the coordinate system solution, these boundary conditions become, ir the transformed field,

$$
\begin{array}{ll}
\psi_{1,1}=\psi_{1} & 1=I 2---I 3 \\
\psi_{1,1}=\psi_{2} & 1=1---I 1 \text { and } 1=[4---I \tag{24b}
\end{array}
$$

As in the case of the coordinare system solution, the remaining portions of the $j=1$ line are re-entrant boundaries, si that points thereon are treated as field points rather than boundary points. The g-derivatives at the surface points, I1, I2, I3, and I4, on the cuts between the bodies are also evaluated using the one-sided expressions of Eq. (11) in the calculation of the velocity on the surface.

The Kutca condition must be applied on each body. Therefore, a fourth component solution is added, and the four component solutions each satisfy Eq. (6), with the respactive boundary conditions

$$
\begin{array}{ll}
\psi_{1,1}^{(1)}=0 & 1=1--I 1, I 2--I 3, I 4--I \\
\psi_{1, J}^{(1)}=y_{1, J} & 1=1--I \\
\psi_{1,1}^{(2)}=0 & 1=1--I 1, I 2--I 3, I 4--I I \\
\psi_{1, J}^{(2)}=-x_{i, J} & 1=1-\cdots I \\
\psi_{1,1}^{(3)}=0 & 1=1--I 1, I 4-\cdots-I \\
\psi_{1,1}^{(3)}=1 & 1=I 2--I 3 \tag{27b}
\end{array}
$$

$$
\begin{array}{ll}
\psi_{1, J}^{(3)}=0 & 1=1-\cdots I \\
\psi_{1,1}^{(4)}=1 & 1=1-\cdots-I 1,14-\cdots-I \\
\psi_{1}^{(4)}=0 & 1=12--I 3 \\
\psi_{1, J}^{(4)}=0 & 1=1--I \tag{23c}
\end{array}
$$

The complete solution with arbitrary circulation about each body is

$$
\begin{align*}
\psi\left(\xi, \eta ; \lambda_{1}, \lambda_{2}\right)=\psi^{(1)}(\xi, \eta) \cos \theta & +\psi^{(2)}(\xi, n) \sin \theta+\lambda_{1} \psi^{(3)}(\xi, n) \\
& +\lambda_{2} \psi^{(4)}(\xi, n) \tag{29}
\end{align*}
$$

The Kutta condition is then satisfied by choosing the coefficients λ_{1} and λ_{2} such that the one of Eq. (13a) - (13c) being applied is satisfied on each body. This requires only the simultaneous solution of two linear algebraic equations. Generalizing to N bodies, it is necessary to solve the difference equation system $N+2$ times for a given multiple airfoil system. The solution at any orientation of the free stream may then be obtained without re-solving the difference system.

IV. EfFECT OF NUMERICAL PARAMETERS

An extensive study was made to determine the effects of the various parameters involved on the accuracy of the numerical solution, Numerical results for the lift and drag coefficients, the surface pressure distribution, and the stream function contours for two Karman-Trefftz airfolls were compared with the analytic solutions (Ref. 2l) using several values for each of the parameters that must be chosen in the numerical solution.

The numerical parameters invoived in the solution are the following: Coordinate System Parameters
I - number of points on the airfoil (number of g-lines).
J - number o: lines surrounding the airfoil (number of n-lines).
r_{∞} - radius of outer boundary.
$\varepsilon_{C S}$ - convergence criterion for iteration error norms. (Iteration is terminated when the maximum absolute change in x and y over the field between iterations becomes less than $\varepsilon_{C S}$)

Pctential Flow Solution Parameters

$\varepsilon_{\mathrm{PF}}$ - convergence criterion for iteration error norms. (See note with $\varepsilon_{C S}$ above)
Q_{E} - order of extrapolation used in satisfaction of Kutta condition. (See Eq. 13)
$Q_{V K}$ - order of approximation in calculation of surface velocity used In satisfaction of Kutta condition. (See Eq. 12)
$Q_{V P}$ - order of approximation in calculation of surface velocity used in surface pressure calculation. (See Eq. 12)
Q_{I} - order of approximation of pressure integration used in calculation of force coefficients. (See Eq. 22)

The comparison of the numerical results with the analytic solutions is presented in terms of the following quantities:
$\Delta C_{L}-$ lift coefficient error (numerical minus analytic).
ΔC_{D} - drag coefficient error (analytic is zero).
N_{∞} - maximum norm of stream function error (maximum absolute differ-
ence between numerical and anslytic values over entire field).
N_{2} - Euclidean norm of relative stream function error (root-meansquare over entire field of difference between numerical and analytic values relative to analytic value).

Finally, results for these two airfoils at the zero-lift angle and a fev other angles are also compared with the analytic solutions.

The parameter comparison cases and the values of the numerical parameters used therein are listed in Table 1 , while the comparison of results is given in Tables 2 and 3. The number of iterations and the computer time required (UNIVAC 1106) are given correspondingly in Tables 4 and 5. The zero-lift angle results and results at other angles are given in Tables 6 and 7. The airfoil contours are shown in Figs. 5 and 6, and the points on the contours and the Karman-Trefftz parameters are given in Tables 8-10. Typical coordinate systems are shown in Fig. 7. Only a portion of the field is shown in each instance.) In addition, selected plots of the surface pressure distribution and the stream function contours In comparison with the analytic solution are presented in Fiss. 8-1?. In each figure the line is the analytic solution and the symbols are the numerical results. Finally, the numerical results for a liebeck laminar airfoil are given in Figs. 18-21, in comparison with experimental data (Ref. 22). A. Effect of Point Distribution on Airfoil Contour

As expected, the results generally improve as the number of points on the airfoil contour is increased. There are, f ever, some exceptions,
and the point distribution is important as well. The cases cited below with a number of points ending in ' 7 ' have points spaced at equal angles on the circle in the complex plane from which the airfoil was generated, with three additional points ei holf, quarter, and uighth spacing added above and below the trailing edge.

The pressure distrivution for Airfoil \#1 with 37 points on the contour agrees fairly well with the analytic solution but with some small deviation near the slope break on the upper surface (Fig. 8a). With 67 points the agreement is excellent (Fig. 8b). An increase to 127 points gives no real improvement and, in fact, a single low point appears at the slope break. The streamlines also show some slight deviation from the analytic curves with 37 points on the airfoil, particularly below the airfoil, but near perfect agreement is obtained with 67 points (Fig. 9). The lift and drag coefficient errors both decrease progressively as the number of points on the alrfoil increases from 37 to 67 to 127 points for Airfoii \|1 (Table 2). However, the Euclidean error norm of the stream function increases slightly for 127 points after decreasing for 67 poinls. These trends are the same with Airfoil \#2, except that the case of 127 points is not quite as good as that with 67 points In any respect except C_{D} (Table 3).

The accuracy deteriorated significantly for both airfoils when the abovementioned additional points near the trailing edge were removed. Thus the case of 61 points, having only equi-angular spaced points (in the complex plane), duss not give as good agreement in the pressure distribution, the streamlines, or the force coefficients (Table 2) as does the case with the additional points (67 points). In fact, the force coefficients show an order of magnitude improvement for Airfoil \#l with the addition of these points near the trailing edge.

A similar addicion of points between the equi-angular points near the leading edge, however, does not necesearily improve the solution. Fig. ba and 10 show that for Airfoil \# the pressure distribution with 43 points has a pressure dip near the leading edge that does not occur with 37 points or in the analytical curve. This effect becomes even more pronounced as more points near the leading edge are added (47 points). The streamlines also show some deviation from the analytical solution in the vicinity of the leading edge. The leading edge pressure peak is, however, better represented with the additional points, as is the small pressure dip that occurs at the slope break on the upper surface. The overall agreement for the pressure distribution is somewhat better with the addition of the six leading edge points to 37 point contour, and this is reflected in an improvement in the force coefficients (order-of-magnitude improvement in drag). The second addition of points (43 to 47) was deleterious in all respects. The addition of points near the leading edge of a contour with 67 points (total of 73 points), however, did not improve the force coefficients, and the pressure coefficient agreement deteriorated somewhat on the upper surface near the leading edge and near the slope break (Fig. 8b \& c).

With Airfoil \|I, the addition of the points between the equi-angular points near the leading edge (73 points total) deepened the low pressure spike near the leading edge beyond the analytical curve by a large amount, with a resultant adverse effect on the force coefficients (Fig. l5b \& c). Althcugh the lift did improve somewhat in one case (increase from 43 to 47) it appears that a more regular spacing of points is appropriate on the smooth portions of the contour. If the spacing is to be decreased near the leading edge, the variation should be smooth and gradual, especially with leading edges having large curvarure placed at large angles of attack. More closely
apaced points should be added near the tralling edge, however. It should be noted that the equi-angular spacing in the complex plane gives an automatic concentration of points near the leading edge, but this concentration is smooth and gradual.
B. Effect of Number of Lines Surrounding the Body

Both the force coefficients improved somewhat with both airfoils as the number of lines surrounding the airfoil (n-lines) was increased, the trend being more merked with the thicker profile of Airfoil \#1. However, the pressure dip at the slope break on the upper surface of Airfoil \|l was deepened beyond the analytical, and more of a dip appeared at the trailing edge (Fig. $11 \mathrm{~b} \& \mathrm{c}$). With Airfoil 12 these was little noticeable effect of the decreased number of lines en the pressure distribution or the streamlines. Thirty lines is clearly adequate for 1% accuracy in lift with the outer boundary located at 10 chords.

C. Effect of Location of Outer Boundary

Since the boundary conditions applied on the outer boundary are those appropriate at infinity, the outer boundary must be sufficiently distant from the body for accuracy. This effect was analyzed by changing both the outer boundary radius and the number of lines surrounding the body, so that the average mesh spacing would be inchanged. As expected, the force coefficients do improve as the outer boundary recedes. However, 10 chords was adequate for 1% accuracy in lift. A decrease in the outer boundary radius to 5 chords produced deterioration in both force coefficients. The use of a more distant outer boundary definitely requires an increase in the number of lines surrounding the body.

The effect of an increase in the outer boundary radius from 10 to 20 chords was not discernable in the pressure distribution and streamlines
for Alrfoll 2. The effects with Alrfoil $11(F i g .11)$ were similar to those of an Increase in the number of lines surrounding the body. This results from the natural tendency of the coordinate system to expand outward from the body, so that a simultaneous increase in the outer boundacy radium and the number of lines sirrounding the body results in a closer lise spacing near the body, even thougt the average spacing is unchanged.

D. Effect of Order of Extrapolation Used in Kutta Condition

The use of two or one point extrapolation of the velocity to the trailing edge in application of the Kutta condition resulted in a progressively deeper low pressure spike at the trailing edge with Airfoil \|l (cf Fig. 8c \& 13b). This spike is removed with three-point extrapolation. This effect was less pronounced with Airfoil \#2 since the trailing edge was less sharp. The use of the requirement that the trailing edge be a stagnation point gave about as good results as the use of the extrapolation to the trailing edge with the Less sharp trailing edge of Airfoil \#2 (cf Fig. 8c \& 13a). Three-point extrapolation is the most appropriate condition, as is indicated by the ΔC_{L} values for Airioll ${ }^{11}$ in Table 2.
E. Effect of Order of Velocity Difference Expression Used in Kutta Condition

A first-order expression for the velocity is not sufficiently accurate and produced a low pressure spike at the trailing edge with Airfoil \#l. This spike was removed by the use of a second-order expression (Fig. 8c). Further increase in order gave no improvement (Fig. 13d). Again these effects are less evident with the less sharp trailing edge of Alrfoil \|2.
F. Effect of Ord of Velocity Difference Expression Used in Pressure Calculation Calculation

Here again a first-order expression does not give an accurate pressure distribution with Airfoil $\# 1$ (Fig. 14a). A second-order expression, however,
is quite accurate, (Fig. 8r) and little further improvement occured with an increase to third-order (Fig. 14b).

G. Effect of Order of Pressure Integration

Perhaps surprisingly, Sirnson's rule (second-order) did not give as accurate a pressure integration as did the first-order trapezoidal rule. This probably is a result of the fact that although the points on the contour are equally spaced in the transformed plane, so that Simpson's rule can be applied, they are not equally spaced in the physical plane. Therefore, the truncation error term of the Simpson integration will be dependent on the rate-of-change of the physlcal coordinate spacing, so that, although the order is second, the coefficient may be high with a resultinc loss in overall accuracy in regions of rapidly varying spacing.

H. Recommended Values

In view of the present results, 1% accuracy in lift can be achieved with the following values for the numerical parameters:
(a) 37 points on the airfoil contour, spaced with smooth and gradual concentration near the leading edge and with a few more closely spacei points added near the trailing edge.
(b) 30 ines surrounding the airfoil.
(c) Outer boundary at $: 10$ chords.
(d) Coordinate system convergence criteria of 10^{-4}.
(e) Stream function convergence criteric. of 10^{-4}.
(f) Three-point extrapolation to trailing edge in satisfaction of Kutta condition.
(g) Second-order difference expression for veiocity.
(h) Trapezoidal pressure integration.

These values are the minimum considered adequate for 1% accuracy in lift. The changes in force coefficients encountered with more stringent values are summarized in Table 11 for Airfoil \#1.

Items (f) - (h) are adequate for even higher accuracy. However, items (a) - (c) must be increased, and items (d) - (e) decreased for higher accuracy. A change of the convergence criteria to 10^{-5} is relatively inexpensive in computer time. However, computer time varies approximately linearly with the number of points on the airfoil and quadratically with the number of lines surrounding the airfoil. More points on the contour will obviously be required with more irregularly shaped bodies. The computer time is not significantly affected by the shape with the same number of points.

V. MULTIPLE-BODY SOLIJTIONS

In the present study, the numerical results for potential flow about two circular cylinders, aligned such that a line connecting the circle centers is normal to the uniform free stream velocity, are compared with the analytic solution for the pressure distribution on the cylinder surfaces (Ref. 23). The cylinder axes were separated by three radii in all cases. The outer boundary was located at 20 cylinder diameters from the mid-point between the cylinders in all. cases, and there were 40 n -lines surrounding tie bodies, except as noted.

As noted above, there are a number of different possible arrangements in which the boundaries in a multiple-body field may be distributed around the rectangular boundary of the transformed field. Many of these arrangements are illustrated in Ref. 18-19. Three such arrangements were considered in the present study (Fig. 22).

If the generating partial differential system for the curvilinear coordinates is simply the pair of Laplace equations $(P=Q=0$ in (2)), then the coordinate lines have a tendency to be attracted, as it were, to convex portions of the boundary and repelled from concave portions. This presents a problem with the two-body segment arrangement shown in Fig. 22a, for, with the n-coordinate having the same value on both bodists, the cut connecting the bodies must also be a line of the same n-value. Consequently, a concave region deveiops at the intersections of this cut with the bodies. The resulting coordinate system is shown in Fig. 23a, and the results for the surface pressure distribution in Fig. 23b are grossly in error because of the large truncation error that occurs with the widely spaced coordinate lincs in the regions of the cut intersections.

However, coordinate system control, as discussed above, can be used to attract the coorcinate lines into these concave regions. As noted above, it is possible to attract the coordinate lines to specified lines and/or points on the boundary and in the field. Various different combinations of line and point attractions were considered and representative results are shown in Figs. 24 and 25.

In Fig: 24a-e, the coordinate systems and pressure distributions are shown for five amplitudes of point attraction of the n-lines (surrounding the bodies) to the cut intersections. The attraction decay factor (see appendix) was 0.5 in all cases given. Too large a decay factor is ineffective, while too small a factor extends the attraction beyond the local region of interest. The pressure distribution changes drastically from that from that obtained without attraction (Fig. 23) as the attraction amplitude is initially increased. The changes become progressively smaller as the amplitude increases farther, with very little change from an amplitude of 500 to one of 2000. (Although the best fit to the analytic solution occurs with an amplitude of 250 , this is only a fortuitous circumstance, since the results are still changing with attraction amplitude at that point.) This progressively diminishing effect of increasing attraction amplitude is also evident in the force coefficiencs normal to the free strean given in Table 12.

Comparison of Figs. 24 d and 24 f shows the effect of decreasing the number of ξ-lines passing between the bodies. The solution is not greatly affected by the decrease in the number of lines except in the region of the cut intersections, where the angle between the ξ-line emanating from the cut intersection and the n-line between the bodies is smaller. Too small an angle between coordinate lines increases the local truncation
error, so that it is necessary to avoid having the E-line emanating from the cut intersection deviate greatly from 45°. This means that the point spacing on the cut between the bodies should be nearly the same as that on the body contours in the neighborhood of the cut intersections. Table 12 shows that an addition of four lines between the bodies, by contrast, had little effect.'

This need for relatively equal point spacing on the body contours and the cut between is further illustrated in Figs. 256 and $25 d$, where, with fewer points on the bodies, the smaller number of lines between the bodies gives better results. The force coefficients results in Table 12 show a further deterioration as still more lines are added between the bodies. This figure also shows that, with this smaller number of points on the bodies, the increasing attraction produces little change from an amplitude of 500 to one of 1000 , but a larger change then occurs at a larger amplitude. Comparison of the force coefficients in Table 12 also shows that 31 points on each body is not enough for accuracy.

That the addition of more points on the body contour in the neighborhood of the cut intersection is inferior to unifcrmly spaced points is illustrated in Figure 26a. Here the additional closely spaced points on the contour have caused the $\xi-1$ ine angles on the contour near the cut intersections to become too small. Some control over these angles can be exercised by attracting the $\xi-11 n e s$, as well as the $\eta-1$ ine to the cut intersections, the results of which are illustrated in Figure 26b. However, the curvature of the ξ-lines in the field near the cut is now quite large, and truncation error results therefrom. Other combinations of attractions were also considured, and some results therefor are given in Table ${ }^{\text {'.2. }}$

Table 12 also gives the force coefficients for some cases with closer and more distant outer boundaries and cases with fewer n-lines surrounding the bodies. These results show only small differences with 61 points on the bodies.

Two other coordinate system configurations are shown in Figs. 27 and 28. That of Fig. 28 is similar to a bi-polar coordinate system and produces a near-perfect comparison with the analytic results on one cylinder with 61 points on each body. With 31 points, however, the accuracy is not quite as good. Since this configuration has different coordinate values on the two bodits, cut intersections of the type discussed above do not oecur, and the coordinate system is much more regular near the bodies. However, in contrast to the previous configuration, the results on the other cylinder are not quite identical. This appeared to be a bi-stable situation, with excellent comparison occuring on the other cylinder in some cases, a result, perhaps, of the SOR iteration sweeping the field in one direction. The force coefficient of the previously considered configuration \#1 with 61 poincs on the contour (0.6534) is within 3% of the essentially exact value (0.6331) obtained from Fig. 28b. The results of the configuration of Fig. 27 could be improved by coordinate system control as used above.

Finally, Figs. 29 and 30 show the coordinate system and potential solution for a multiple airfoil consisting of two Karman-Trefftz airfoils, one being positioned as a separated flap. Coordinate system control has been used to attract the coordinate lines to the airfoils and to the cut between.

VI. CONCLUSION

The use of body-fitted curvilinear coordinate systems allows numerical potential flow solutions for fields containing any number of bodies of arbitrary shape to be produced by finite-difference methods essentially as easily as that about single simple bodies. The computer code is not dependent on either the number or the shapes of the bodies, so that different bodies can be treated by simple changes in the input. Further investigation of the control of the coordinate system is presently in progress with the purpose of improving the coordinate configuration in concave regions created by cut intersections with members of multiplebody combinations. Multiple-body viscous solutions are also under development.

APPENDIX

derivatives and vectors in the transfoined plane

Derivative Transformations

$$
\begin{align*}
& f_{x}=\left(\frac{\partial f}{\partial x}\right)_{y, t}=\left(y_{\eta} f_{\xi}-y_{\xi} f_{\eta}\right) / J \tag{A.1}\\
& f_{y}=\left(\frac{\partial f}{\partial y}\right)_{x, t}=\left(x_{\xi} f_{\eta}-x_{\eta} f_{\xi}\right) / J \tag{A.2}\\
& f_{t}=\left(\frac{\partial f}{\partial t}\right)_{x, y}=\left(\frac{\partial f}{\partial t}\right)_{\xi, \eta}-\frac{1}{J}\left(y_{\eta} f_{\xi}-y_{\xi} f_{\eta}\right)\left(\frac{\partial x}{\partial t}\right)_{\xi, \eta} \\
& \tag{A.3}\\
& -\frac{1}{J}\left(x_{\xi} f_{\eta}-x_{\eta} f_{\xi}\right)\left(\frac{\partial y}{\partial t}\right)_{\xi, \eta} \tag{A.4}\\
& \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\left(\alpha f_{\xi \xi}-2 \beta f_{\xi \eta}+\gamma f_{\eta \eta}\right) / J^{2}+Q f_{\eta}+P f_{\xi}
\end{align*}
$$

Unit Vectors in the Transformed Plane

Let ${ }_{\sim}^{n}$ be the unit vector normal to a line of constant n and τ be the unit vector tangent to an n-line. Utilizing similar definitions for unit normals and tangents to $\xi=$ constant lines, there results

$$
\begin{align*}
& \left.n_{n}=\frac{\nabla \eta}{\mid \overline{\nabla n}} \right\rvert\,=\left(-y_{\xi_{-}}^{i}+x_{\xi_{-}^{j}}\right) / \sqrt{\gamma} \tag{A.5}\\
& \underline{n}_{\underline{\xi}} \quad \stackrel{\nabla \bar{\nabla}}{|\underline{\nabla} \xi|}=\left(y_{n}^{1}-x_{n}^{j}\right) / \sqrt{\alpha} \tag{A.6}
\end{align*}
$$

$$
\begin{align*}
& \tau_{\eta} \equiv n_{-\eta} \times k=\left(x_{\xi} \underline{1}+y_{\xi} j\right) / \sqrt{\gamma} \tag{A.7}\\
& \tau_{\xi} \equiv n_{-\xi} \times k=-\left(x_{n} 1+y_{n-} j\right) / \sqrt{\alpha} \tag{A.8}
\end{align*}
$$

where 1, f, and k are the unit vectors parallel to the conventional cartesian coordinates x, y, and 2 , respectively. Vector components along the tangents and normals to lines of constant ξ and n are obtained by dotifing the desired vector with one of the above. For example, if $\underset{\sim}{F}=F_{1} \underline{1}+F_{2} \underset{\sim}{j}$, then the component tangent to an n-iine, $F_{I_{n}}$, is given by

$$
\begin{equation*}
F_{\tau \eta}=F \cdot \tau_{-\eta}=\left(x_{\xi} F_{1}+y_{\xi} F_{2}\right) / \sqrt{\gamma} \tag{A.9}
\end{equation*}
$$

Similarly, directional derivatives of a scalar function f in the above directions can be obtained from the inner product of the gradient of $f, \nabla f$, and the appropriate unit vector. For example, the directional derivative normal to an n-line is

$$
\begin{equation*}
\frac{\partial f}{\partial n_{\eta}}=n_{\eta} \cdot \nabla f=\left(\gamma f_{\eta}-B f_{\xi}\right) / J \sqrt{\gamma} \tag{A.10}
\end{equation*}
$$

Integral. Transformation

Let S be the closed cylindrical surface of unit depth whose perimeter is specified by the contour Γ_{1} in the physical plane (Fig. 1), and whose outward unit normal at any point is $n(x, y)$. (Note that this is the unit normal to the n-line coincident with Γ_{1}.). Then,

$$
\begin{equation*}
I \equiv \int_{S} f(x, y)_{\sim}^{n}(x, y) d S=\int_{\xi_{\min }}^{\xi_{\max }}\left\{x\left(\xi, \eta_{1}\right), y\left(\xi, \eta_{1}\right)\right]\left(x_{\xi} j-y_{\xi_{-}}\right) d \xi \tag{A.11}
\end{equation*}
$$

where n_{1} is the value of n on $\Gamma_{1}, \xi_{\min }$ and $\zeta_{\text {max }}$ are the minimum and maximum values of ξ, and x_{ξ} and y_{ξ} are evaluated along η_{1}.

Coordinate System Control

The effect .. changing the functions $P(\xi, n)$ and $Q(\xi, \eta)$ on the coordinate system is discussed in some detail in Ref. 18 and 19 . One particularly effective procedure is to choose P and Q as exponential terns, so that the coordinates are generated as che solutions of

$$
\begin{align*}
\xi_{x x} & +\xi_{y y}=-\sum_{i=1}^{n} a_{i} \operatorname{sgn}\left(\xi-\xi_{i}\right) \exp \left(-c_{i}\left|\xi-\xi_{i}\right|\right) \\
& -\sum_{j=1}^{m} b_{j} \operatorname{sgn}\left(\xi-\xi_{j}\right) \exp \left(-d_{j} \sqrt{\left.\left(\xi-\xi_{j}\right)^{2}+\left(n-n_{j}\right)^{2}\right)}\right. \\
& \equiv P(\xi, n)
\end{align*}
$$

$$
\eta_{x x}+\eta_{y y}=-\sum_{i=1}^{n} a_{i} \operatorname{sgn}\left(\eta-\eta_{i}\right) \exp \left(-c_{i}\left|\eta-\eta_{i}\right|\right)
$$

$$
-\sum_{j=1}^{m} b_{j} \operatorname{sgn}\left(\eta-\eta_{j}\right) \exp \left(-d_{j} \sqrt{\left.\left(\xi-\xi_{j}\right)^{2}+\left(\eta-\eta_{j}\right)^{2}\right)}\right.
$$

$$
\begin{equation*}
\equiv Q(\xi, n) \tag{A.13}
\end{equation*}
$$

where the positive amplitudes and decay factors are not necessarily the same in the two equations. Here the first terms have the effect of actracting ξ-lines to the $\xi=\xi_{i}$ lines in Eq. (A.12), and attracting n-ines to the $r_{1}=n_{1}$ lines in (A.13). The second terms cause ξ-lines to be attracted to the points (ξ_{j}, η_{j}) in (A.12), and n-lines to be attracted to the points (ξ_{j}, n_{j}) in (A.13). Several examples of the use of coordinate system control are given in Ref. 18 and 19.

REFERENCES

1. J. P. Giesing, "Potential Flow about Two-Dimensional Airfoils," Rept. LB 31946, Douglas Aircraft Co. (1965).
2. J. L. Hess and A. M. O. Smith, "Calculation of Potential Flow About Arbitrary Bodies," Progress in Aeronautical Sciences, 8, 1, Pergammon Press, Oxford (1966).
3. J. P. Giesing, "Unsteady Two-Dimensional Potential Flow for Two Bodies with Lift," Rept. DAC-33552, Douglas Aircraft Co., (1967).
4. J. P. Giesing, "Nonlinear Two-Dimensional Unsteady Potential Flow with Lift," Journal of Aircraft, 5,135 (1968).
5. J. L. Hess, "Calculation of Potential Flow About Arbitrary ThreeDimensional Lifting Bodies," Rept. MDC J5679-Cl, McDonnel Douglas Corp. (1972).
6. R. H. Djojodihardjo and S. E. Widnall, "A Numerical Method for the Calculation of Nonlinear, Unsteady Lifting Potential Flow Problems," AIAA Journal, 7, 2001 (1969).
7. E. Grodtkjaer, "A Direct Integral Equation Method for the Potential Flow About Arbitrary Bodies," Int. Jour. for Numerical Methods in Engineering, 6,253 (1973).
8. W. C. Webster, "The Flow About Arbitrary, Three-Dimensional Smooth Bodies," Journal of Ship Research, 19, 206 (1975).
9. L. J. Doctors, "An Application of the Finite Element Technique to Boundary Value Problems of Potential Flow, Int. Jour. for Numerical Methods in Engineering, 2, 243 (1970).
10. J. H. Argyris and G. Maruzek, "Potential Flow Analysis by Finite Elements," Ingenieur-Archiv, 41, 1 (1972).
11. U. Meissner, "A Mixed Finite Element Model for Use in Potential Flow Problems," Int. Jour. for Numerical Methods in Engineering, 6, 467 (1973).
12. T. Theodorsen and I. E. Garrick, "General Potential Theor: of Arbitrary Wing Sections," NACA TR 452 (193j)
13. D. C. Ives, "A Modern Look at Conformal Mapping, Including Doubly Connected Regions," AIAA Paper 75-842, AIAA 8th Fluid and Plasma Dynamics Conference, Hartford (1975).
14. J. F. Thompson, F. C. Thames, and C. W. Mastin, "Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies," Journal of Computational Physics, 15, 299 (1974).
15. F. C. Thames, J. F. Thompson, and C. W. Mastin, "Numerical Solution of the Navier-Stokes Equations for Arbitrary Two-Dimensional Airfoils," Proceedings of NASA Conference on Aerodynamic Analysus Requiring Advanced Computers, Langley Research Center, NASA SP-347, (1975).
16. F. C. Thames, "Numerical Solution of the Incompressible Navier-Stokes Equations about Arbitrary Two-Dimensional Bodies," Ph.D. Dissertation, Mississippi State University (1975).
17. J. F. Thompson, F. C. Thames, and S. P. Shanks, "Use of Numerically Generated Body-Fitted Coordinate Systems for Solution of the NavierStokes Equations," Proceedings of AIAA 2nd Computational Fluid Dynamics Conference, Hartford, Connecticut, (1975).
18. J. F. Thompson, F. C. Thames, and C. W. Mastin, "Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies," NASA CR, Mississippi State University, to be published 1976.
19. J. F. Thompson, F. C. Thames, and C. W. Mastin, "Bodyfit-A Code for Coordinate Systems on Fields Containing any Number of Arbitrary TwoDimensional Bodies," Journal of Computatio. 11 Physics, submitted 1976.
20. J. F. Thompson, F. C. Thames, C. W. Mastin, and R. L. Walker, "Numerical Solution of the Time-Dependent Navier-Stokes Equations About Arbitrary Two-Dimensional Bodies," Journal of Computational Physics, submitted 1976.
21. K. Karamacheti, Principles of Ideal-Fluid Aerodyramics, John Wiley \& Sons, Inc., (1966).
22. R. H. Liebeck, Wind Tinnel Tests of Two Airfoils Designed for High i, ift Without Separation in: Incompressible Flow, McDonnel Douglas Corporation, Report No. MDC-J5667/01, (1972).
23. P. M. K. Morse and H. Feshbach, Method of Theoretical Physics, Vol. II, McGraw-Hill, (1953).

Case	Airfoil	I	J	\mathbf{r}_{∞}	$\log _{10}{ }^{E} C S$	a	$\log _{10}{ }^{E} P F$	Q_{E}	$Q_{\mathbf{V K}}$	$Q_{\mathbf{V P}}$	$Q_{\mathbf{I}}$
31	1, 2	73	30	10	-5	See Note 1	-5	3	2	2	2
32	1. 2	67	30	10	-4		-4	3	2	2	1
33	1	127	30	10	-5	-20.8596	-5	3	2	2	1
34	2	127	1	1	1	- 1.6746			1	1	1
35	2	73			,	-1.65		,	,	,	,
36	2	73	γ	\dagger	1	-2.66	\dagger	\downarrow	1	1	1

TABLE 1 (CONCI.uded)

$\quad Q_{V P} \quad$| order of approximation in calculation of surface velocity used in surface pressure |
| :--- |
| calculation (see Eq. 12). |

$Q_{I}-\quad$| order of approximation of pressure integration used in calculation of force cofficients |
| :--- |
| $(s \in e ~ E q . ~ 22)$. |

Comparison with Analytic Solution - Airfoil \#1

Case
ΔC_{L}
ΔC_{D}
N_{∞}
N_{2}

Points on Body

37	16	-0.0587	0.0102	$3.35-01$	$2.06-03$
43	2	0.0059	-0.0008	$3.29-01$	$3.98-03$
47	3	0.0120	-0.0212	$3.29-01$	$4.31-03$
61	6	-0.0577	-0.0325	$3.28-01$	$4.44-03$
67	20	-0.0019	0.0040	$3.37-01$	$1.31-03$
73	5	0.0019	-0.0046	$3.29-01$	$2.07-03$
127	1	0.0006	0.0027	$3.40-01$	$9.96-03$

Yoints to ∞, ω at 10

30	32	-0.0080	0.0038	$3.37-01$	$1.21-03$
60	7	0.0032	-0.0026	$3.78-01$	$1.38-03$

Points to ∞, ∞ at 20

30	12	-0.0169	0.0078	$3.65-01$	$5.65-03$
60	8	-0.0057	0.0010	$3.64-01$	$7.89-04$

Location of ∞, Step Size 10/60 avg.

5	11	0.0296	-0.0067	$3.08-01$	$2.10-03$
10	7	0.0032	-0.0026	$3.78-01$	$1.38-03$

Location of ∞, Step Size 20/60 avg.

10	32	-0.0080	0.0038	$3.37-01$	$1.21-03$
20	8	-0.0057	0.0010	$3.64-01$	$7.89-04$

Location of ∞, Step Size 40/60 avg.

20	12	-0.0169	0.0078	$3.65-01$	$5.65-03$
40	9	-0.0100	0.0028	$3.86-01$	$4.85-04$

Location of $\infty, 30$ Points to ∞

5	11	0.0300	-0.0067	$3.08-01$	$2.10-03$
10	32	-0.0080	0.0038	$3.37-01$	$1.21-03$
20	12	-0.0169	0.0078	$3.65-01$	$5.65-03$

TABLE 2 (CONTINUED)
Case
ΔC_{L}
ΔC_{D}
N_{∞}
N_{2}

Location of $\infty, 60$ Points to ∞

10	7	0.0032	-0.0026	$3.78-01$	$1.38-03$
20	8	-0.0057	0.0010	$3.64-01$	$7.89-04$
40	9	-0.0100	0.0028	$3.86-01$	$4.85-04$
80	10	-0.0120	0.0041	$3.56-01$	$1.11-03$

Coordinate System Convergence Criteria, 37 Points on Body

$10-2$	13	-0.1691	0.0049	$3.42-01$	$3.80-03$
$10-3$	14	-0.0118	0.0108	$3.36-01$	$3.14-03$
$10-4$	15	-0.0108	0.0103	$3.35-01$	$2.09-03$
$10-5$	16	-0.0087	0.0103	$3.35-01$	$2.06-03$

Coordinate System Convergence Criteria, 67 Points on Body

$10-3$	18	-0.0345	0.0035	$3.38-01$	$1.28-03$
$10-4$	19	-0.0051	0.0040	$3.37-01$	$1.24-03$
$10-5$	20	-0.0019	0.0040	$3.37-01$	$1.31-03$

Stream Function Convergence Criteria

$10-2$	21	-0.0687	-0.1066	$3.32-01$	$2.14-02$
$10-3$	22	0.0548	-0.0084	$3.37-01$	$1.22-03$
$10-4$	23	-0.0096	0.0047	$3.37-01$	$1.26-03$
$10-5$	20	-0.0019	0.0040	$3.37-01$	$1.31-03$

Order of Extrapolation for Kutta Condition

$:$	24	-0.0044	-0.0046	$3.29-01$	$1.16-02$
2	25	0.0027	-0.0046	$3.29-01$	$1.93-03$
3	5	0.0019	-0.0046	$3.29-01$	$2.07-03$
Stagnation					
Point	26	0.0581	-0.0050	$3.30-01$	$1.18-02$

Order of Velocity for Kutta Cordition

1	27	-0.0814	-0.0041	$3.28-01$	$6.61-03$
2	5	0.0019	-0.0046	$3.29-01$	$2.07-03$
3	28	0.0083	-0.0047	$3.29-01$	$3.08-03$

Order of Velocity for Pressure Calculation

1	29	0.0722	0.0109	$3.29-01$	$2.07-03$
2	5	0.0019	-0.0046	$3.29-01$	$2.07-03$
3	30	0.0084	-0.0015	$3.29-01$	$2.07-03$

Order of Pressure Integration

1	5	0.0019	-0.0046	$3.29-01$	$2.07-03$
2	31	0.0040	-0.0087	$3.29-01$	$2.07-03$

Note: Case numbers correspond to those of Table 1.

Legend:

The comparison of the numerical results with the analytic solutions is presented in terms of the following quantities:
ΔC_{L} - lift coefficient error (numerical minus analytic)
ΔC_{D} - drag coefficient error (analytic is zero)
$\mathrm{N}_{\text {m: }}$ - maximum norm of stream function error (maximum absolute difference between numerical and analytic values over entire field)
N_{2} - Euclidean norm of relative stream function error (root-mean-square over entire field of difference between numerical and analytic values relative to analytic value)
table 3
Comparison with Analytic Solution - Airfoil \#2
Case
ΔC_{L}
ΔC_{D}
$\mathrm{N}_{\infty} \quad \mathrm{N}_{2}$

Points on Body

43	2	-0.0633	0.2135	$1.11-01$	$2.96-02$
47	3	0.0023	0.2487	$1.10-01$	$2.31-02$
53	4	0.0086	0.2580	$1.09-01$	$7.21-03$
61	6	-0.0741	-0.0211	$1.57-01$	$6.68-03$
67	20	0.0475	-0.0250	$3.13-02$	$1.04-03$
73	5	0.0890	0.0990	$1.11-01$	$2.05-02$
127	1	0.0973	-0.0197	$1.11-01$	$1.71-02$

Points to ∞, ∞ at 10

30	32	0.0433	-0.0253	$3.93-02$	$2.63-03$
60	7	0.0307	-0.0217	$4.11-02$	$2.02-03$

Points to ∞, ∞ at 20

30	12	0.0412	-0.0280	$4.67-02$	$1.48-03$
60	8	0.0171	-0.0159	$4.47-02$	$2.25-03$

Location of ∞, Step Size 10/60 Avg.

5	11	0.0929	-0.0423	$4.68-02$	$6.86-03$
10	7	0.0307	-0.0217	$4.11-02$	$2.02-03$

Location of ∞, Step Size 20/60 Avg.

10	32	0.0433	-0.0253	$3.93-02$	$2.63-03$
20	8	0.0171	-0.0159	$4.47-02$	$2.25-03$

Location of ∞, Step Size $40 / 60$ Avg.

20.	12	0.0412	-0.0280	$4.67-02$	$1.48-03$
40	9	0.0156	-0.0146	$5.45-02$	$2.23-03$

Location of $\infty, 30$ Points to ∞

5	11	0.0929	-0.0423	$4.68-02$	$6.86-03$
10	32	0.0433	-0.0253	$3.93-02$	$2.63-03$
20	12	0.0412	-0.0280	$4.67-02$	$1.48-03$

Location of $\infty, 60$ Points to ∞

10	7	0.0307	-0.0217	$4.11-02$	$2.02-03$
20	8	0.0171	-0.0159	$4.47-02$	$2.25-03$
40	9	0.0156	-0.0146	$5.45-02$	$2.23-03$
80	10	0.0176	-0.0151	$6.86-02$	$5.22-03$

TABLE 3 (CONTINUED)
Case
ΔC_{L}
ΔC_{D}
N_{∞}
N_{2}

Coordinate System Convergence Criteria

$10-2$	17	-0.4180	-0.0204	$4.81-02$	$6.40-03$
$10-3$	18	-0.0619	-0.0245	$3.09-02$	$1.37-03$
$10-4$	19	0.0430	-0.0249	$3.13-02$	$8.89-04$
$10-5$	20	0.0475	-0.0250	$3.13-02$	$1.04-03$

Stream Function Convergence Criteria

$10-2$	21	0.6407	-0.2199	$4.01-01$	$3.62-02$
$10-3$	22	0.1192	-0.0620	$9.32-02$	$4.18-03$
$10-4$	23	0.0487	-0.0255	$3.92-02$	$2.20-03$
$10-5$	20	0.0475	-0.0250	$3.13-02$	$1.04-03$

Order of Extrapolation for Kutta Condition					
1	24	0.0857	0.0989	$1.11-01$	$2.05-02$
2	25	0.0902	0.0991	$1.11-01$	$2.05-02$
3	5	0.0890	0.0990	$1.11-01$	$2.05-02$
Stagnation Point	26	0.0881	0.0990	$1.11-01$	$2.05-02$

Order of Velocity for Kutta Condition

1	27	0.1150	0.0997	$1.18-01$	$3.62-03$
2	5	0.0890	0.0990	$1.11-01$	$2.05-02$
3	28	0.1057	0.0995	$1.15-01$	$3.11-03$

Order of Velocity for Pressure Calculation

1	29	0.02401	0.1397	$1.11-01$	$2.05-02$
2	5	0.0890	0.0990	$1.11-01$	$2.05-02$
3	30	0.0744	0.0917	$1.11-01$	$2.05-02$

Order of Pressure Integration

1	5	0.0890	0.0990	$1.11-01$	$2.05-02$
2	31	-0.2298	0.0879	$1.11-01$	$2.05-02$

Note: Case numbers correspond to those of Table 1.
Legend:
The comparison of the numerical results with the analytic solutions is presented in terms of the following quantities:

TABLE 3 (CONCLUDED)
ΔC_{L} - lift coefficient error (numerical minus analytic)
ΔC_{D} - drag coefficient error (analytic is zero)
N_{∞} - maximum norm of stream function (maximum absolute difference between numerical and analytic values over entire field)
N_{2} - Euclidean norm of relative stream function error (root-meansquare over entire field of difference between numerical and analytic values relative to analytic value)

TABLE 4
Iterations and Computer Time - Airfoil \#l

Case $\quad{ }^{I T} T_{C S} \quad \mathrm{IT}_{0} \quad \mathrm{IT}_{90} \quad{ }^{\mathrm{IT}} \mathrm{TIR} \quad \mathrm{CT}_{\text {CS }} \quad \mathrm{CT}_{\mathrm{PSI}}$

Points on Body

37	16	95	60	77	78	$0: 57$	$0: 56$
43	2	105	62	81	84	$1: 14$	$1: 09$
47	3	106	65	83	92	$1: 19$	$1: 11$
61	6	132	79	95	124	$2: 04$	$1: 52$
67	20	151	83	114	121	$2: 28$	$1: 59$
73	5	172	96	100	156	$3: 10$	$2: 35$
127	1	401	197	195	348	$11: 57$	$7: 46$

Points at ∞, ∞ at 10

30	32	116	53	73	101	$1: 58$	$1: 39$
60	7	227	73	79	188	$7: 21$	$4: 06$

Points to ∞, ∞ at 20

30	12	165	58	80	125	$2: 44$	$1: 49$
60	8	290	74	82	208	$10: 13$	$5: 44$

Location of ∞, Step Size 10/60 avg.

5	11	123	47	69	79	2:06	1:27
10	7	227	73	79	188	7:21	4:06
Location of ∞, Step Size 20/60 avg.							
10	32	116	53	73	101	1:58	1:39
20	8	290	74	82	208	10:13	5:44

Location of ∞, Step Size 40/60 avg.

20	12	165	58	80	125	$2: 44$	$1: 49$
40	9	360	75	86	232	$11: 34$	$5: 54$

Location of $\infty, 30$ Points to ∞

5	11	123	47	69	79	$2: 06$	$1: 27$
10	32	116	53	73	101	$1: 58$	$1: 39$
20	12	165	58	80	125	$2: 44$	$1: 49$

TABLE 4 (CONCLUDED)

	Case	IT \sim S	IT0	IT_{90}	$\mathrm{IT}_{\text {CIR }}$	${ }^{C T}{ }_{C S}$	${ }^{C T} \mathrm{PSI}$
Location of $\infty, 60$ Points to ∞							
10	7	227	73	79	188	7:21	4:06
20	8	290	74	82	208	10:31	5:44
40	9	360	75	86	232	11:34	5:54
80	10	446	78	91	258	14:13	5:01

Coordinate System Convergence Criteria, 37 Points on Body

$10-2$	13	38	59	78	78	$0: 30$	$0: 57$
$10-3$	14	54	60	77	78	$0: 39$	$0: 57$
$10-4$	15	75	60	77	78	$0: 49$	$1: 16$
$10-5$	16	95	60	77	78	$0: 57$	$0: 56$

Coordinate System Convergence Criteria, 67 Points on Body

$10-3$	18		83	114	121		$1: 59$
$10-4$	19	116	83	114	121	$1: 58$	$1: 59$
$10-5$	20	151	83	114	121	$2: 28$	$1: 59$

Stream Function Convergence Criteria

$10-2$	21	151	6	25	30	$2: 28$	$0: 40$
$10-3$	22	151	21	54	60	$2: 28$	$1: 02$
$10-4$	23	151	51	87	90	$2: 28$	$1: 30$
$10-5$	20	151	83	114	121	$2: 28$	$1: 59$

Note \#1: Case numbers correspond to those of Table 1.
Note \#2: CPU time is given in MINUTES:SECONDS. These times are subject to some variation depending on the operating conditions at the time of the run.

Legend:
IT ${ }_{\text {CS }}$ - Iterations for coordinate system
IT 0 - Iterations for 0° potential flow solution
IT 90 - Iterations for 90° potential flow solution
$I T_{\text {CIR }}$ - Iterations for circulation potential flow solution
$\mathrm{CT}_{\mathrm{CS}}$ - CPU time for coordinate system
$\mathrm{CT}_{\mathrm{PSI}}$ - CPU time for complete potential fiow solution
table 5
Iterations and Computer Time - Airfoil \#2

Points on Body

43	2	95	53	72	82	$1: 27$	$1: 10$
37	3	104	57	77	92	$1: 17$	$1: 09$
53	4	118	59	81	106	$1: 38$	$1: 21$
61	6	144	65	88	124	$2: 84$	$2: 09$
67	20	162	68	92	141	$2: 40$	$2: 11$
73	5	182	75	100	157	$3: 25$	$2: 28$
127	1	419	131	170	350	$12: 56$	$1: 01$

Points to ∞, ∞ at 10

30	32	125	36	61	101	$2: 11$	$2: 01$
60	7	239	42	75	188	$7: 54$	$3: 45$

Points to ∞, ∞ at 20

30	12	225	37	64	125	$4: 01$	$2: 04$
60	8	299	39	71	208	$9: 58$	$3: 54$

Location of ∞, Step Size $10 / 60$ Avg.

5	11	86	34	57	79	$1: 33$	$1: 19$
10	7	239	42	75	188	$7: 54$	$3: 45$

Location of ∞, Step Size 20/60 Avg.

10	32	125	36	61	101	2:11	2:01
20	8	299	39	71	208	9:58	3:54
Location of ∞, Step Size 40/60 Avg							
20	12	225	37	64	125	4:01	2:04
40	9	374	37	69	231	11:60	3:57

Location of $\infty, 30$ Points to ∞

5	11	86	34	57	79	$1: 33$	$1: 19$
10	32	125	36	61	101	$2: 11$	$2: 01$
20	12	225	37	64	125	$4: 01$	$2: 04$

TABLE 5 (CONCLUDED)

Case	${ }^{\text {IT }}$ CS	IT_{0}	${ }^{17} 90$	${ }^{1 T_{C I R}}$	${ }^{C T}$	$\mathrm{T}_{\text {PSI }}$

Location of $\infty, 60$ Points to ∞

10	7	239	42	75	188	$7: 54$	$3: 45$
20	8	299	39	71	208	$9: 58$	$3: 54$
40	9	374	37	69	231	$11: 60$	$3: 57$
80	10	463	36	68	257	$15: 34$	$4: 14$

Coordinate System Convergence Criteria

	17	52	85	97	140	$1: 02$	$2: 04$
$10-3$	18	88	71	92	141	$1: 32$	$1: 55$
$10-4$	19	125	69	92	141	$2: 11$	$1: 54$
$10-5$	20	162	68	92	141	$2: 40$	$2: 11$

Stream Function Convergence Criteria

$10-2$	21	162	3	12	22	$2: 40$	$0: 35$
$10-3$	22	162	10	31	61	$2: 40$	$0: 53$
$10-4$	23	162	35	61	101	$2: 40$	$1: 31$
$10-5$	20	162	68	92	141	$2: 40$	$2: 11$

Note \#1: Case numbers correspond to those of Table 1.

Note \#2: CPU time is given in MINUTES:SECONDS. These times are subject to some variation depending on the operating conditions at the time of the run.

Legend:

$$
\begin{aligned}
& \mathrm{IT}_{\mathrm{CS}} \text { - Iterations for coordinate system } \\
& I T_{0} \text { - Iterations for } 0^{\circ} \text { potential flow solution } \\
& I T_{90} \text { - Iterations for } 90^{\circ} \text { potential flow solution } \\
& { }^{I T_{C I R}} \text { - Iterations for circulation potential flow solution } \\
& C T_{C S}-C P U \text { time for coordinate system } \\
& C T_{P S I}-C P U \text { time for complete potential flow solution }
\end{aligned}
$$

tABLE 6

Comparison with Analytic Solution - Zero Lift and Other Angles

	Case	ΔC_{L}	ΔC_{D}	N^{*}	N_{2}
$a=-20.8596$ (zero 11ft)	33	-0.0440	-0.0334	2.01-01	8.89-03
$a=-1.6746$ (zero 11ft)	34	0.0000	0.0020	6.38-03	5.98-04
$a=-1.65$	35	0.0000	-0.0037	6.12-03	2.98-03
$a=2.66$	36	0.0128	-0.0358	1. $09-02$	6.87-04

Legend: See Table 2 or 3. Case 33 is Airfoll \#1, and the others are Airfoil $\$ 2$.

table 7

Iterations and Computer Time - Zero Lift and Other Angles

Table 8
Points on Contour - Airfoil 11

ORIGINAL PAGE IS
OF POOR QUALITY

 $0=0$ Now

$\begin{aligned} & \text { Transformation: } \frac{Z_{k}-m_{k} R_{k}}{z_{k}}-\frac{m_{k} L_{k}}{L_{k}}=\left(\frac{z_{k-1}-R_{k}}{2_{k-1}-L_{k}}\right)^{m_{k}}, k=1,2,-\ldots, N \\ & m_{k}=2-\frac{\zeta_{k}}{\pi}\end{aligned}$

This transforms a circle in the Z plane into the airfoil in the Z_{N} plane through N successive transformations.

Airfoil \#1
$\mathrm{N}=3$
$R_{1}=0.737277+10.6755902$
$L_{1}=0+10$
$\zeta_{1}=160^{\circ}$
$R_{2}=0.39875-10.91706$
$L_{2}=0+i 0$
$\zeta_{2}=200^{\circ}$
$R_{3}=0.93667-10.35021$
$L_{3}=-0.843-10.315866$
$\zeta_{3}=12^{\circ}$
Circle center $=0+i 0$
Circle radius $=1.0$
Airfoil Chord $=3.4647$

A1rfoil \#2
$\mathrm{N}=1$
$R_{1}=1.0+10$
$L_{1}=-1.0+10$
$\zeta_{1}=9^{\circ}$
Circle Center: $-0.04405+10.03$
Circle Radius: 1.04448
Airfoil Chord: 3.9081497

TABLE 11 JF POOR QUALITY

Changes in Force Coefficients with Increase from Adequate Parameter Values - Airfoil \#1

| Parameter | Change | $C_{\underline{L}}^{C_{D}}$ | |
| :--- | :--- | :--- | :--- | :--- |
| Number of Points on Airfoil | 37 to 67 | 0.009 to 0.002 | 0.01 to 0.004 |
| Number of Lines Around Airfoil | 30 to 60 | 0.008 to 0.003 | 0.004 to 0.003 |
| Radius of Outer Boundary | 10 to 20 | 0.008 to 0.006 | 0.004 to 0.001 |
| Coordinate Convergence Criteria | 10^{-4} to 10^{-5} | 0.005 to 0.002 | no change |
| Stream function Convergence Criteria | 10^{-4} to 10^{-5} | 0.01 to 0.002 | 0.005 to 0.004 |
| Kutta Extrapolation Order | 2 to 3 | 0.003 to 0.002 | no change |
| Kutta Velocity Order | 2 to 3 | worse | worse |
| Velocity Order | 2 to 3 | worse | 0.005 to 0.002 |
| Pressure Integration Order | 1 to 2 | worse | worse |

TABLE 12
Force Coefficient Normal to Free Stream - Two Circles

Configuration.	Amplitude of ξ-line Attraction to Cut Intersections	```Amplitude of n-line Attraction to Cut Intersections```	Number of Points on Each Body	Number of lines Between Bodies	Radius of Outer Boundary	Force Coefficient
Effect of η-lin 1	Attraction - 61 Po 0	s on Each Body $\begin{array}{r} 100 \\ 250 \\ 500 \\ 1000 \\ 2000 \end{array}$	61	10	20	$\begin{aligned} & 0.8309 \\ & 0.7095 \\ & 0.6688 \\ & 0.6565 \\ & 0.6534 \end{aligned}$
Effect of $n-1$ n 1	$\begin{gathered} \text { Attraction }-31 \text { Po } \\ 0 \end{gathered}$	s on Each Body $\begin{array}{r} 250 \\ 500 \\ 1000 \\ 2000 \end{array}$	31	6	20	$\begin{aligned} & 0.7399 \\ & 0.7037 \\ & 0.7003 \\ & 0.7129 \end{aligned}$
Effect of Number 1	of Lines Between 0	es - 61 Points on 1000	ch Body 61	$\begin{array}{r} 6 \\ 10 \\ 14 \end{array}$	20	$\begin{aligned} & 0.6401 \\ & 0.6565 \\ & 0.6595 \end{aligned}$
Effect of Number 1	of Lines Between 0	es - 31 Points on 1000 2000	ch Body 31	$\begin{array}{r} 6 \\ 10 \\ 20 \\ 6 \\ 10 \\ 20 \end{array}$	20	$\begin{aligned} & 0.7003 \\ & 0.7646 \\ & 1.5149 \\ & 0.7129 \\ & 0.7642 \\ & 1.0704 \end{aligned}$

Configuration	Amplitude of ξ-line Attraction to Cut Intersections	Amplitude of n-line Attraction to Cut Intersections	Number of Points on Each Body	Number of Lines Between Bodies	Radi."s of Outer Boundary	Force Coefficient
Effect of ξ and 1	line Attraction - $\begin{array}{r} 2000 \\ 0 \\ 1000 \\ 2000 \end{array}$	ditional Points on $\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	tour Near 37		20	$\begin{aligned} & 0.5577 \\ & 0.6255 \\ & 0.5513 \\ & 0.5518 \end{aligned}$
Effect of Addition of Poinis on Contour Near Cuts			$\begin{aligned} & 31 \\ & 37 \end{aligned}$	10	20	$\begin{aligned} & 0.7646 \\ & 0.6255 \end{aligned}$
Effect of Outer 1	undary Radius 0	$\begin{gathered} 1000 \\ 2000 \\ 1000 \\ 2000 \end{gathered}$	$\begin{aligned} & 31 \\ & 31 \\ & 61 \\ & 61 \end{aligned}$	10	$\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 20 \\ & 10 \\ & 20 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.7900 \\ & 0.7646 \\ & 0.7834 \\ & 0.7642 \\ & 0.6398 \\ & 0.6565 \\ & 0.6394 \\ & 0.6534 \end{aligned}$
Effect of Number 1	f Lines Surroundi 0	Bodies 1000	61	10	$\begin{gathered} 20 \\ (20 \text { lines }) \\ 20 \\ (40 \text { lines }) \end{gathered}$	$\begin{aligned} & 0.6441 \\ & 0.6565 \end{aligned}$

TABLE 12 (CONCLUDED)

	Amplitude of 5-line Attraction to Cut Intersections	Amplitude of n-line Attractionto Cut Intersections	Number of Points on Each Body	Number of Lines Between Bodies	Radius of Outer Boundary	Force Coefficient
Miscellaneous						
2	0	200				
3	0	0	31	-		
3	0	0	61	-	0.7378	

Physical Plane

Transformed Plane

Figure 1. Field Transformation - Single Body

Physical Plate

Transformed Plane

Figure 2. Field Transtormation - Multiple Bodies

ORIGINAL PACE IS
OF POOR QUALIIY

a) Single Bxdy

b) Two Body

Figure 9. Computational Grids - Single and Two Body Kegions

Figure 4

ukigish pace is OF POOR QUALITY.

Figure 5. Karman-Trefftz Airfoil \#1 Contours

ORIGINAL PACE IS
OF POOR QUALITY

Figure 5. (Concluded)

ORIGINAL PACE IS
 OF POOR QUALCTY

43 FMINTS

47 FQINTE

53 FOINTS

Figure 6. Karman-Trefftz Airfoil \#2 Contours

6. FDIMT

67 FOIATS

TE PGINS
-

127FOINTE

Airfoil \#1
ORIGINML PO:
OF POCR:

Ai:foil \#2

Figure 7. Typical Coordinate Systems

Figure 8. Effect of Contour Point Distribution on Pressure Distribution Airfoil \#1. (Solid line is analytical; symbols are numerical.)

(a.) 37 Points (Case 16)

ORIGINA: PRAE 15
OF POOR QUA!ITY

Figure 9. Effect of Contour Point Distribution on Streamlines - Airfoil \#1. (Solid line is analytical; :ymbols are numerical.)

M是
(c.) Streamlines, 6 Additional Points (Case 2)

Figure 10. Effect of Addition of Points Near Leading Edge - Airfoil \#1. (Solid line is analytical; symbols are numerical.)

(c.) ∞ at 10, 30 Points (Case 32)
(d.) ∞ at 20,60 Points (Case 8)

Figure 11. Effect of Distance to Outer Boundary - Airfoil \#l. (Solid line is analytical; symbols are numerical.)

Figure 12. Effect of Convergence Criteria - Airfoil \#1. (Solid Ine is analytical; symbols are numerical.)

ORIGIRAL PACE is OF POOR QUALITY

(c.) First-Order Velocity (Case 27) (d.) Third-Order Velocity (Case 28)

Figure 13. Effect of Extrapolation and Velocity Orders for Kutta Condition - Airfoil "1. (Solid line is analytical; symbols are numerical.)

Figure 14. Effect of Orde: of Velocity in Surface Pressure Calculation Airfoil ||1. (Solid line is analytical; symbols are numerical.)

Figure 15. Effect of Contour Point Distribution on Pressure Distribution Airfoii \#2. (Solid line is ana!ytical; symbols are numerical.)

ORICI:I!
OF POOK Sulir

(b.) 67 Points (Case 20)

(c.) 73 Points (Case 5)
(d.) 127 Points (Case 1)

Figure 16. Effect of Contour Point Distribution on Streamlines Airfoil \#2. (Solid line is analytical; symbols are numerical.)

OKル:
OF POMn yuinlay

(a.) Pressure Distribution,
Airfoil \#1 (Case 33)

(b.) Streamlines, Airfoil \#1 (Case 33)

(c.) Pressure Distribution, Airfoll \#2 (Case 34)

(d.) Streamlines, Airfoil \#2 (Case 34)

Figure 17. Zero-Lift Angle Results - Airfoils \#1 and \#2.

Figure 18. Liebeck Laminar Airfoil

Figure 19. Coordinate System - Liebeck Laminar Airfoil
ortemal prect is of poof quality

Figure 20. Comparison of Experimental and Numerical Pressure Distribution - Liebeck. Laminar Airfoil

LIEBECK LAMINAR AIRFOIL

- NUMERICAL
- TEST DATA[22]

Figure 21. Comparison of Experimental and Numerical L Lift Curve - Liebeck Laminar Airfoil

(a.) Configuration \#1

(b;) Configuration ! 2

(c.) Configuration \#3

Figure 22. Two-Body Coordinate System Configurations.

(b.) Pressure Distribution.

Figure 23. Coordinate System and Pressure Distribution for Two Circles Cc.:figuration \#1, 61 Points on Each Body.

(a.) 100 Attraction to Cut Intersection

(b.) 250 Attraction to Cut Intersection

Figure 24. Controlled Coordinate System and Pressure Distribution for Two Circles - 61 Points on Each Body.

(c.) 500 Attraction to Cut Intersection

Figure 24. (Continued)

(e.) 2000 Attraction to Cut Intersection

Figure 24. (Concluded)

(a.) 500 Attraction to Cut Intersection

Figure 25. Controlled Coordinate System and Pressure Distribution for Two Circles - 31 Points on Each Body.

(c.) 2000 Attraction to Cut Intersection

(d.) 1000 Attraction to Cut Intersection, More Lines Between Bodies Figure 25, (Concluded)

(b.) 2000ξ and η-line Attraction to Cut Intersections

Figure 26. Controlled Coordinate System and Pressure Distribution for Two Circles - 37 Points on Each Body.

Figure 27. Controiled Coordinate System and Pressure Distribution for Two Circles, Configuration $\# 2,31$ Points on Each Body.

ORIGINAL PACE IS OF POOR QUALITY

(a.) 31 Points on Each Body

(b.) 61 Points on Each Body

Figure 28. Coordinate System and Pressure Distribution for Two Circles, Configuration \#3.

$$
c-2
$$

OF PGO.: RUALITY

Figure 29. Coordinate System - Multiple Airfoil - Attraction to Body and Cut Intersections

ORICINAL PAGE IS OF POOR QUALIT

Figure 30. Potential Flow Streamlines and Pressure Distributions

- Double Airfoll

[^0]: *Research sponsored by NASA-Langley Research Cencer, Grant NGR 25-001-055
 ${ }^{+}$NASA Langley Research Center

