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Abstract

A procedure for the finite~-difference numerical solution of the
lifcing potential flow about any number of arbitrarily shaped bodies is
given. The solution is basad on a technique of automatic numerical gener-
ation of a curvilinear coordinate system having coordinate lines coinci-
dent with the contours of all bodies in the field, regardless of their
shapes and number. The effects of all numerical parameters involved are
analyzed and appropriate values are recommended. Comparisons with analytic
solutions for single Karman-Trefftz airfolls and a circular cylinder pair
show excellent agreement. The paper serve~ also to illustrate the technique
of application of the boundary-fitted coordiaate systems to the numerical

solution of partial differential equations.



I. INTRODUCTION

Numerical incompressible potential flow solutions for bodies of arbi-
trary shape have generally fallen into three categories:

(1) Integral equation methods, whereby various singular solutions of
Laplace's equation are superposed to construct a solution satisfying the
boundary conditions of the particular problem of interest. This type of
approach is represented by the work in references 1-8. In these methods
singular solutions of Laplace's equation are distributed on the body sur-
face, and perhaps also in its interior, with the body surface represented
by quadralatgral or triangular panels. The strengths of the singulariries
are then determined such that the superposition of the onset velocity
field and that induced by the totality of the singularities satisfies the
condition of vanishing normal velocity at the body surface at certain points.

This approach has been carried to a high degree of refinement
and is presently capable of treating the flow about multiple bodies of
arbitrary shape. This procedure obviates calculation in the entire flow
field and involves instead the solution of a matrix equation of order
equal to the number of points of application of the boundary condition on
the bodies. The primary output is the surface pressure distribution on the
bodies ‘and the resulting aerodynamic coefficients. The velocity field can
also be obtained, but this requires the evaluation of the velocity at each
point in the field from a summation over all the singularities involved--a
time consuming process. The determination of streamlines, or equivalently
the stream function, from the velocity field is still another numerical

problem itself.



(2) Finite element methods, as represented by references 9-11. Here
the calculation is carried out in the entire flow fleld, the field being
divided into finite elements. The flow solution is obtained by applying
an integral variational principle, or other integral relations, over the
aggregate of elements, which leads to a matrix solution of order equal to
the total aumber of elements in the field. The solution is thus obtained
in the entire flow field. However, not all derivatives can be made con-
tinuous across the boundaries.between the various elements.

(3) Conformal transformation, whereby the field is transformed to one
of simple geometry on which the solution is known (two-dimensional flow
only). The classic Theodorsen method [12) i{s one of this type. A compara-
tive discussion of earlier applications of this and other procedures is given
in {1]. Recently Ives [13] has extended this approach to multiple bLodies.

Finite difference solutions have been severely hindered in the pas:
by the problem of fitting curved boundaries into the computational zrid.
The use of interpolation between grid points to represent boundary condi-
tions on a curved boundary passing through a rectangular grid may lead to
poor application of the boundary conditions. Since finite difference
solutions depend on continuity of derivatives, the distribution of points
at will in the field leads to difference expressions involving large num-
bers of points, loss of repeat patterns over the field, and hence unreason-
ably complex computer codes.

Howsaver, if a curvilinear coordinate system with coordinate lines
coincident with the field boundaries can be found, these problems vanish,

and the finite difference approach can give very smooth solutions that do



not lack continuity of derivatives. The potential flow solution reported
herein is based on just such an approach.

The present finite-difference potential flow solution utilizes a
method of automatic numerical generation of a general boundary-fitted
curvilinear coordinate system having coordinate lines coincident with all
boundaries of a general multi-connected region containing any number of
arbitrarily shaped bodies, whic: hus been revorted earlier (Ref. 14-16).
The curvilinear coordinates are éenerated 2s the solutions of an
elliptic partial differential system with Dirichlet boundary conditions,
one coordinate being specified to be constant on each of the boundaries,
and a distribution of the other being specified along the boundaries. No
restrictions are placed on the shape of the boundaries, which may even be
time-dependent, and the method is not restricted to single bodies or, in
principle, to two dimensions. Coordinate lines may de concentrated as
desired along the boundaries. Procedures have also been developed to
control the coordinate line spacing in the field by varying the generating
elliptic system.

Regardless of the number or shapes of the bodies and regardless of
the spacing of the curvilinear coordinate lines, all numerical computations,
both to generate the coordinate system and to subsequently solve the Lap-
lace equation for the stream function are done on a rectangular grid with
a square mesh, i.e., in the transformed plane. Although not necessary in
the present application, it is also possible to cause the boundary-fitted
coordinate system to change in time however desired and still have all
computation done on the fixed rectangular grid with square mesh [17].

This allows the curvilinear coordinate system in the physical plane to
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deform with a deformirg body, free surface, or any other boundary, keeping
a coordinate line always coinciden: with the boundary at all times. The
physical coordinate system has been, in effect, eliminated from the prob-
lem, at the expense of adding two elliptic equations to the original system.

Since the curvilinear coordinate system has coordinate lines coin-
cident with "he surface contours of all bodies present, all boundary
conditions may be expressed at grid points, and normal derivatives on the
bodies may be represented using caly finite differences between grid points
on coordinate lines, without need of any interpolation, even though the
coordinate system is not orthogonal at the boundary. With this methcd of
boundary-fitted coordinate system generation, the treatment of fields with
complex boundaries and any number of bodies is not inherently more difficult
than problems with simple geometry.

This use of numerically-generated boundary-fitted coofdinate systems
is not peculiar to the present application to potential flow, but rather
is applicable to the numerical solucion of any partial differential system.
Other applications presently under consideration include viscous incompres-
sibie and compressible flow, free surface flows, turbulent flows, and
solid mechanics problems. Some examples of such applicatiéns are giyen
in Ref. 17-20. Documentation of the coordinate system generation procedure
and computer program are given in Ref. 18 and 19. The procedure is briefly
summarized in the next section. The present paper serves also to illustrate
the technique of application of the boundary~-fitted coordinate systems in the
numerical solution of partial differential equations.

II. BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEM

A. Mathematical Construction

Let it be desired to transform the two-dimensional, doubly-connected
region, D, bounded by two closed contours of arbitrary shape into a rectang-

ular region, D*, as shown in Fig. 1. The general transformation from



the physical plane (x,y) to the transformed plane (£,n) is given by 5
£ = E(x,y), n = n(x,y). Since the basic idea of the transformation is to
generate transformation functions such that all boundaries are coincident
with coordinate lines, the curvilinear coordinates ({,n) are taken as
solutions of some suitable elliptic boundary value problem with one of
these coordinates constant on the boundaries. The choice of a'suitable
elliptic system is restricted somewhat by the need for certain maximum
principles as discussed in Ref. 18. The system given below allows con-
siderable control to be exercized over the spacing of the curvilinear

coordinate lines in the field:

Cex t Eyy = P(E,n) (la)

Nex + gy * Q(g,n) (1b)

with Dirichlet boundary conditions, n = constant = n on Fl,
= n, on Fz; E(x,y) e multiplé valued solution with a branch or ¢(x,y)

n = congtant

specified (but not constant) on Fl and Fz. The curve Fl on the physical
plane transforms-to the lower boundary, P?, of the transformed plane.
Similarly, Pz transforms to Fg, etc. Ihe right and left boundaries of the
iectangular transformed plane, Pg and Fz, are coincident in the physical
plane. The curve which transf;tms to these boundaries connects Fl and

P2 and determines a branch cut for the multiple valued function £(x,y).

Thus the functions and all derivatives are continuous across this aut.

The inﬁomogeneous functions P(£,n) and Q(&,n) are sums of decaying

exponentials that allow coordinate lines to be attracted to specified
lines and/or points in the field or on the boundaries as discussed in more

detail in Ref. 17-19. These functions, along with the derivative transfor-
mation relations are given in the appendix.

Now since it is desired to do all numer’ical computation in the rec-

tangular transformed plane, it is necessary to interchange the dependent and

independent variables in (1). Thus using the relations from the appendix,
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ax,., - 28x, + YX - lexEP(C.n) + an(C.ﬂ)l . (2a)

&8 €n
- - - J2 (
WY eg 2ByEn + YYon J [yCP\S.n) + YnQ(E.ﬂ)] (2b)
where
~ 2 4 2 - 2 2
*T X ! Yn v X * Ye
B = XX, + Yevn J = XeYn ™ XpYe

with the trausformed boundary conditions, x = fl(E.nl) on Ti. y = gl(ﬁ.nl)
on I't, x = £,(§,n,) on M, y = g,(£,n,) on M. (In the present application,
x and y are nundimensionalized with respect to the airfoil chord.)

The curvilinear coordinate system so generated has a constant n-line
coincident with each boundary in the physical plane. The £-lines may be
spaced in any manner desired around the boundaries by specification of the
£ boundary conditions, or equivalently by specification of (x,y) at the
equi-gpaced £-points on the Ny and ny lines of the transformed plane.
Contrel of the spacirg of the n-lines may be exercised by varying the
attraction parameters in the functions P(£,n) and Q(&,n) of Eq. (2) as
discussed in Ref. 18 and 19.

The same procedure for boundary-fitted coordinate generation may be
applied to regions that are more than doubly connected, {.e., have more
than two closed boundaries or, equivalently, more than one body or hole
within a single outer boundary. One possible transformation to the
rectangular field for any number of bodies is {llustrated in Fig. 2. Here
the n-coordinate is required to be equal to the same constant on all the
interior boundaries, i.e., on all bodies in the field. Let all the bodies
be connected by arbitrary cuts and, similarly, one body be connected to

the outer boundary by an arbitrary cut. Since the n-coordinate is equal
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to the same constant on all the bodies, it is, of course, equal to that
constant on the cuts between the bodies also. By contrast, the f£~coordinate
is taken constanr on the cut between one body a.... the outer boundary.

Since the locations of these cuts are not specified, the specification

of n or £ as constar: on a cut Joes not oversperify the elliptic problem.

Note that all bodies except one are split into two segments. Each
cut appears twice on the transformed field “oundary of course, the two
segments corresponding to the two "sides” of the cut in the physical plane
and thus being re-entrant boundaries with the functions of all derivatives
continuous thereon. Thus, x and y are specified on the portions of the
lower boundary of the transformed field that corresponds to the bodies,
and also on the entire upper boundary, corresponding to the outer boundary
in the physical field. The ' oaining portions of the lower boundary and
the entire side boundaries are re-entrant boundaries, and ihus nefther
require nor allow specification of (x,y) thereon. Other arrangements
are also possible as discussed in decail in Ref. 18 and 19, two of which
are used below.

Again the elliptic Dirichlet problem (2) is solved to generate the
boundary-fitted coordinates (§{,n). All computation, both éo generate the
coordinates and subsequently to solve the partial differential system of
interest, are again done on the rectangular field with square mesh in the
transformed plane.

B. Numerical Implementation

The transformed field for a single airfoil is illustrated in Fig. 3a.
The physical coordinates of I points describing the body surface, (x,y),
provide the boundary conditions along the j = 1 line, and those of 1

points on the physical remote boundary, usually a circle of radius ten or



13
more chords, supply the boundary conditions along the j = J line of the
transformed field. Since the side boundaries of the trsnlformed fleld are
re-entrant, corresponding to the cut in the physical plane, we have f

1,j°

and f fz.J for all j. Note that the values of x and y are rot

£ -
1,5 I+1,)
specified on thesc side boundaries. All derivatives in (2) are approxi-

mated by second-order central difference expressions (A§ and An are both

unity by cons:iruction, the actual values of £ and n being immaterial since
]

cancellation occurs after substitution in the transformed equations,):

(£0) 45 * 3 41,5 = Eio1,g) (3a)

TRV ROV (3b)

(Begdey ™ Bran,y = 2yy * fiop, (3¢)

(Ep gy ® £ goy = 264y * £ oy (3d)
Ceni % Bior, 01 = Bran,ge1 7 Bpop e * fiogg) O30

The resulting set of 2I(J-1) nonlinear difference equations, two for each
point (1,j) for i = 1, 2, --, I-1 and J = 2, 3, --, J-1, are solved by
accelerated Gauss-Seidel (SOR) iteration using overrelaxation. The
iteration #{s considered to have converged when the maximum absolute change
on the field between iterates is less than a specified valuz. A range of
acceleration paramecters was examined, and a value of 1.85 was nearly opti-
mum for the airfoils considered. After convergence of the solution of (2),
the values of the coefficients a, 8, v, J, at each point of the field
are stored for use in the solution of the stream function equation.

The transformed field for two airfoils is illustrated in Figz. 3b.
The physical coordinates of body #2 at points i = 1---I1, those of body #1

at points i = [2---13 ) and finally the remaining points i = I4---1 on body
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#2 ars input as boundary conditions on the § = 1 line in the transformed
plane. The remaining points, { = (Il + 1)===(12 - 1) and { = (I3 + |)-==
(I4& - 1), on the jJ = 1 line are re-entrant points corresponding to the cut
between the todies in the physical plane. Therefore values at thesc

points are not specified, but rather the relations f f d

11 + k1~ “14 - k,1°"

£11 + k,0 " f14 - k,2 for k= 1-==(I2 = I1 = 1) hold. The rest of the

procedure is unchanged from the case of a single airfoil, except that twou
Jifference equations at each of the points (i,1) for i = (Il + 1)~==(12 =~

1) are added to the system, so that the to'.al number of equations is now

21 (J-1) + 2(12 -~ Il - 1).



IIT. POTENTIAL FLOW SOLUTION

A. Laplace Equation

The two-dimensional irrotational Zlow about any number of bodies may

be described by the Laplace equation for the stream function, ¢:

+ = 0 4
Yox Wyy (4)

with boundary conditions
y(x,y) = constant on each body (5a)
y(x,y) = y cos® - x 2‘nd at infinity (5b)

vhere 6 is the angle of attack ~f the free strenmrrelative to the positive
x~-axis. Here the stream function is nondimensionalized relative to the
airfoil chord and the fre: stream velocity. When transformed to the

curvilinear coordinate system this equation becomes (see appendix)

Ve - 28V, + v¥ o+ JZQUE, MV, + P(E,M)] = 0 (6)

nn w&
where a, 8, vy, and J are given above, and the trausformed boundary

conditions are, for a single body,

| p(E,n) = vyonn=n, {i.e., on Tﬁ) | (7a)

y(g,n) = y(E.nz) cosf - x(E,nz) sinfon n = Ny (i.e., on T¥) (7b)

The uniqueness is implied by requiring that the solution be periodic in

-®© < f < o nl <n< Ny @, B, Y, and J are calcul;ted during the genera-
tion of the coordinate system. Equation (6) is approximated using second-
order, central differences for all derivatives, and the resulting differ-
ence equation is solved by acceterated Gauss-Seidel (SOR) iteration on the

rectangular transformed field.

13
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The solution of (6) on the transformed field is constructed in the
same manner that has been previously described for the solut 2 of (2).
The single equation (6) replaces the two equations (2a) and (2b), and the
boundary conditions are given by (7). The total number of difference
equations thus is I(J-1) for a single airfoil and I(J~1) + (12 - I1 - 1)
for two airfoils.
B. Velocity

The velocity components are calculated from the equations u = wy'
v e -wx, which in the transformed plane become, from the appendix,

us= (x wn - xnwe)/J (8a)

§
Ve g -y (8b)

Velocities in the interior of the field may be obtained from these rela-

tions using second-order, central difference expressions for all deriva-~

tives as given by Eq. (3).

On the body surface, w€ = 0, so that these expressions reduce to
us= x€wn/J and v = ygwn/J. élso, the unit tangent vector the the body sur-
face is given by (see appendix)

T = (ixg + éyﬁ)//; (9)

Then the velocity component tangential to the surface is given by

vt A
Ve 2V T (uxi * vyﬁ)//; J wn 10

On the surface, the g£~derivatives are approximated by the second-order,
central difference expressions of Eq. (3a), as in the Interior of the
field, at all points except those on the cut, 1 =1 and 1 = I, where

second order, one-sided expressicus are used. Thus
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(f (lla)

5)1.1

1 ,
(f 7 (fyg.p = 461y 1 *+ 36 ) (11b)

1,1 "
The N-derivatives on the surface are approximated at all points by one-
sided expressions. First, second, and third order expressions as follows

were evaluated as discussed in the next section:

(fn)i.l = fi.Z - fi,l (first order) (12a)
1

(fn)i,l =3 (-fi,3 + 4f1,2 - 3fi.l) (second order) (12b)
1

(fn)i,l 5 (2f1'4 - 9fi,3 + 18fi,2 - llfi.l) (third order) (12¢)

C. Kutta Condition

The value of the bcundary value of ¢ on the body, wo’ is determined
by imposing the Kutta condition that the flow leave 'the sharp trailing
edge of an airfoil smoothly. For a cusped trailing edge (zéro included
angle) this condition requires only that the velocity epproach the same
value at the trailing edge on the upper and lower surfaces of the airfoil.
For a trailing edge with finite included angle it is required that the
trailing edge be a stagnation point. It was found, however, that the
requirement that the same limit be approached at the trailing edge on the
upper and lower surfaces was superior numerically with both types of
trailing edges. This limit condition was also applied by Giesing [1]
as the Kutta condition with a finite trailing edge in the potential flow
solution using superposition of singularities.

In the present solution the Kutta condition thus was applied by
requiring that the value of the velocity component tangential to the body

surface extrapolated at the trailing edge from neighBoriné points on the
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upper surface be equal to that extrapolated from neighboring points on the
lower surface. One, two, and three point extrapolations were evaluated,
as well as the simple requir:ment that the velocity vanish at the trailing
edge, These applicatious of the Kutta condition are as follows (Here
superscript o refers to the trailing edge, and the other superscripts to
successively distant neighboring points on the body surface as sllustrated
in Fig. 4. These points are, of course, equi-spaced ir the transformed
plane.):

v§1+) - véo) - vél_) | (first order) (13a)

W4 _ @0 ), (=) (2)

N ¢ ¢ ¢ ¢ (second order) (13b)

3v£1+) - 3v§2+) + v£3+) = vio) = 3v:l-) - 3v£2') + v§3-)(third order) (13c)

D. Superposition of Solutions

Since the system to be solved is linear in ¥, the solution for a single
airfoil at any angle of attack may be obtained by superposing three compo-
nent solutions: (1) a solution at 0° angle of attack with no circulation,
(2) a sulution at 90° angle of attack with no circulation, and (3) a
solution with circulation but zero free stream velocity as ‘done by Giesing
[1}. These three component solutions, wrttten w(i)(g,n). i=1, 2, 3,

each satisfy Eq. (6), with the respective boundary conditions

"’ili =0 ,i= 1-—I (14a)
wﬁ} EAERRS (14b)

(2)

wi 1= 0,i=1---1 ' (15a)
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02 e at = 1 (15b)
03 =1t Lol (16a)
IR (16b)

The complete solution with arbitrary circulstion then is

(2)

vEnin) = v (E,n) cose + v (g,n) stne- 26 (g, (17)

The Kutta condition is then satisfied by chcosing the coefficient A such
that the one of Eq. (13a) - (13c) being applied is satisfied, the
tangential velocities being given by Eq. (10) with ¢ from Eq. (17), usinga
one-sided difference expression analogous to Eq. (11) for the n-derivative.

Thus it is only necessary to solve the system of difference equations
three times for a given airfoil. The solution at any angle of attack may
then be obtained.without re-solving the difference system.

E. Surface Pressure and Force Coefficients

The pressure coefficient at any point in the field may be obtained
from the velocities via the Bernoulli equation, which in the present non-
dimensional variables is

C =1 - 2 ) 18
0 vl (18)

On the body surface this becomes, from (10),

C =1--Ly?2 19
p 2 Wn (19)

with the derivative evaluated by one of the difference expressions of (12).

The nondimensional force on the body is given by

F=-¢§ C, n ds - (20)
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where n is the unit outward normal to the surface, and ds is an increment

of arc length along the surface. Since nds = k x dr, where r is the

position vector of points on the surface and k is the unit normal to the

two-dimensional plane, this becomes (see appendix)
, dr )
- - -':"d - - C x, -1 dg
F v Cp (l_cxdg) § ¢ b { e~ e

The unit vector in the direction of the free stream is a = 1 cos® + j siné,

]

and that normal to the free stream is k x a = } cosf -

e

siné, so that

~he 1ift and drag coefficients are
C,~a'F= ¢ <, (“xscose -.ygsine)ds (21a)

Chp=(kxa)+Fuf €, (ygeosé - Xgsin8)d ¢ (21b)
These integrals can be evaluated by numerical quadrature using either

the trapezoidal rule or Simpson's rule, both of shich were evaluated during

the course of the investigation. For the former we have

I-1

-l
$ £ de 5 (fl’1 + fI’l) + 152 £,1 (first order) (22a)
while for the latter, with I odd,
1 4 p 172
¢ £dg =3 (F) ¥ P +3 Ey v P +] 123 £, | (second order) (22b)

F. Multiple Airfoils

With two airfoils, the boundary condition of Eq. (5a) becomes

v(x,y) = wl on the surface of body #1 (23a)

p(x,y) = wz on the surface of body #2 (23b)

With reference to Fig. 3b and the discussion in the previous section on
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the coordinate system solution, these boundary conditions become, ir the

transformed field,

wi L " wl i s 12---13 (24a)

wi.l =, i = ]l-~-Il and { = [4===I (24b)

As in the case of the coordina*e system solution, the remaining portions
of the j = 1 line are re-entrant boundaries, sn that points thereon are
treated as field points rather than boundary points. The g-derivatives
at the surface points, I1l, I2, I3, and I4, on the cuts between the bodies
are also evaluated using the one-sided expressions of Eq. (11) in the
calculation of the velocity on the surface.

The Kutta condition must be applied on each body. Therefore, a
fourth component solution is added, and the four component.solutions each

satisfy Eq. (6), with the respective boundary conditions

wifi -0 { = 1===Il, I2-==13, T4=—-1 (25a)
wil_), =y { = l-e-1 . (25b)
“’izi =0 1 = l=m=Il, 12-=-13, T4=—=I (26a)
Wﬁ =0 { = l==-11, I4==-I (27a)
wﬁ -1 { = 12---13 | (27b)



3)

vy g0 { = leae?
“’ﬁi =1 { = le==I1, T4==-I
“’?{ =0 1 = I2---13

“’if.)r =0 1= 1---1I

20

(27¢)

(28a)

(28b)

(28¢)

The complete solution with arbitrary circulatior about each body is

weenir ) = 4D @ nrcoss + 4P (g mstne + 2,0 (e,n)

+ 0,

The Kutta condition is then satisfied by choosing the coefficiants Al

and Az

on each body. This requires only the simultaneous solution of two

(29)

such that the one of Eq. (13a) - (13c) being applied is satisfied

linear algebraic equations. Generalizing to N bodies, it is necessary to

solve the difference equation system N + 2 times for a given multiple

airfoil system. The solution at any orientation of the free stream may

then bé obtained without re-solving the difference system.



IV. EFFECT OF NUMERICAL PARAMETERS

An extensive study was made to determine tho effects of the various
parameters involved on the accuracy of the numerical solution, Numerical
results for the 1ift and drag coefficients, the surface pressure distribu-
tion, and the stream function contours for two Karman-Trefftz airfoils were
compared with the analytic solutions (Ref. 21) using several values for
each of the parameters that must be chosen in the numerical solution.

The numerical parameters involved in the solution are the following:

Coordinate System Parameters

I - number of points on the airfoil (number of §-lines).

J - number of lines surrounding the airfoil (number of n-lines).

r_ - radius of outer boundary.

ECS‘- convergence criterion for iteration error norms. (Iteration is
terminated when the maximum absolute change in x and y over the
field between iterations becomes less than € )

Cs

Pctential Flow Solution Parameters

€ - convergence criterion for iteration error norms. (See note

PF

with ECS above)

QE - onrder of extrapolation used in satisfaction of Kutta condition.

(See Eq. 13)
QVK - order of approximation in calculation of surface velocity used
in satisfaction of Kutta condition. (See Eq. 12)
QVP - order of approximation in calculation of surface velocity used in

surface pressure calculation. (See Eq. 12)
QI - order of approximation of pressure integration used in calcula-

tion of force coefficients. (See Eq. 22)

21
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The comparison of the numerical results with the analytic solutions
is presented in terms of the followiag quantities:
ACL - 1lift coefficient error (numerical minus analytic).

ACD - drag coefficient error (analytic is zero).
N_ - maximum norm of stream function error (maximum absolute differ-
ence between numerical and analytic values over entire field).

Nz - Euclidean norm of relative stream function error (root-mean-
square over entire field of difference between numerical and
analytic values relative to analytic value).

Finally, results for these two airfoils at the zero-lift angle and a few

other angles are also compared with the analytic solutioas.

The parameter comparison cases and the values of the numerical para-
meters used therein are listed in Table 1, while the cowparison of results
is given in Tables 2 and 3. The number of iterations and the computer time
required (UNIVAC 1106) are given correspondingly in Tables 4 and 5. The
zero-1ift angle results and results at other angles are given in Tables
6 and 7. The airfoil contours are shown in Figs, 5 and 6, and the
points on the contours and the Karman-Trefftz.parameters are given in
Tables 8-10. Typical coordinate systems are shown in Fig., 7. Only
a portion of the field is shown in each instance.) In addition, selected
plots of the surface pressure distribution and the étream function contours
in comparison with the analytic solution are presented in Figs. 8-17,

In each figure the line is the analytic solution and the symbols are the
numerical results. Finally, the numerical results for a Liebeck laminar

airfoil are given in Figs. 18-21, in comparison with experimental data (Ref. 22).

A. PEffect of Point Distribution on Airfoil Contour

As expected, the results generally improve as the number of points on

the airfoil contour is increased. There are, b Jever, some exceptions,
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and the point distribution is important as well. The caue; cited below
with a number of points ending in '7' have points spaced at equal angles
on the circle in the complex plane from which the airfoil was generated,
with three additional points et helf, quarter, and eighth spacing added
above and below the trailing edge.

The pressure distribution for Airfoil #1 with 37 points on the con-
tour agrees fairly well with the analytic solution but with some small
deviation near the slope break on the upper surface (Fig. 8a). With 67 points
the agreement is excellent (Fig. 8b). An increase to 127 points gives no real
improvement and, in fact, a single low point appears at the slope break. The
streamlines also show some slight deviation from the analytic curves with
37 points on the airfoil, particularly below the airfoil, but near perfect
agreement is obtained with 67 points (Fig. 9). The lift and drag coefficient
errors both decrease progressively as the number of points on the afrfoil
increases from 37 to 67 to 127 points for Airfoil #1 (Table 2). However, the
Euclidean error norm of the stream function increases slightly for 127 points
after decreasing for 67 points. These trends are the same with Airfoil #2,
except that the case of 127 points is not quite as good as that with 67 points
in any respect except CD (Table 3).

The accuracy deteriorated significantly for both airfoils when the above-
mentioned additional points near the trailing edge were removed. Thus the
case of 61 points, having only equi-angular spaced points (in the complex
plane), ducs not give as good agreement in the pressure distributicn, the
streamlines, or the force coefficients (Table 2) as does the case with the
additional points (67 points). In fact, the force coefficirnts show an
order of magnitude improvement for Airfoil #1 with the addition of these

points near the trailing edge.
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A similar addicion of pcints between the equi-angular points near the
leading edge, however, does not necessarily improve the solution. Fig. da and
10 show that for Airfoil #1 the pressure distribution with 43 points has a
pressure dip near the leading edge that does not occur with 37 points or in
the analytical curve. This effect becomes even more pronounced as more
points near the leading edge are added (47 points). The streamlines also
show some deviation from the analytical solution in the vicinity of the
leading edge. The leading edge pressure peak is, however, better repre-
sented with the additional points, as is the small pressure dip that occurs
at the slope break on the upper surface. The overall agreement for the
pressure distribution is somewhat better with the addition of the six
leading edge points to 37 point contour, and this is reflected in an
improvement in the force coefficients (order-of-magnitude improvement in
drag). The second addition of points (43 to 47) was deleterious in all
respects. The addition of points near the leading edge of a contour with
67 points (total of 73 ponints), however, did not improve the force coeffi-
cients, and the pressure coefficient agreement deteriorated somewhat on the
upper surface near the leading edge and near Lhe slope break (Fig. 8b & c).

With Airfoil #2, the addition of the points between the equi-angular
points near the leading edge (73 points total) deepened the low pressure

spike near the leading edge beyond the analytical curve by a large amount,

with a resultant adverse effect on the force coefficients (Fig. 15b & ¢). Althcugh

the lift did improve somewhat in one case (increase from 43 to 47) it appears
that a more regular spacing of points is appropriate on the smooth por-
tions of the contour. If the spacing is to be decreased near the leading
edge, the variation should be smooth and gradual, especially with leading

edges having large curvature placed at l4drge angles of attack. More closely
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spaced points should be added near the trailing edge, however. It should
be noted that the equi-angular spacing in the complex plane gives an auto-
matic concentration of points near the leading edge, but this concentra-
tion is smooth and gradual.

B. Effect of Number of Lines Surrouanding the Body

Both the force coefficients improved somewhat with both airfoils as
the number of lines surrounding the airfoil (n-lines) was increased, the
trend being more merked with the thicker profile of Airfoil #1. Hcwever,
the pressure dip at the slope break on the upper surface of Airfoil /1 was
deepened beyond the analytical, and more of a dip appeared at the tralling edge
(Fig. 11b & c¢), With Airfoil #2 there was little noticeable effect of the decreased
number of lines cn the pressure distribution or the streamlines. Thirty
lines is clearly adequate for 1% accuracy in lift with the outer boundary
located at 10 chords.

C. Effect of Location of Outer Boundary

Since the boundary conditions applied on the outer boundary are
those appropriate at infinity, the outer boundary must be sufficiently
distant from the body for accuracy. This effect was analyzed by changing
both the outer boundary radius and the number of lines surrounding the
body; so that the average mesh spacing would be unchanged. As expected,
the force coefficients do improve as the outer boundary recedes. However,
10 chords was adequate for 1% accuracy in lift. A decrease in the outer
boundary radius to 5 chords produced deterioration in both force coeffi-
cients, The use of 5 more distant outer boundary definitely requires an
increase in the number of lines surrounding the body.

The effect of an increase in the outer bLioundary radius from 10 to 20

chords was not discernable in the pressure distribution and streamlines
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for Airfoil #2. The effects with Airfoil #1 (Fig. 11) were similar to those
of an increase in the number of lines surrounding the body. This results from
the natural tendency of the coordinate system to expand outward from the body,
so that a simultaneous increase in the outer boundary radius and the number

of lines surrounding the body results in a closer line spacing near the body,
even though the average spacing is unchanged.

D. Effect of Order of Extrapolation Used in Kutta Condition

The use of two or one point extrapolation of *“he velocity to the trailing
edge in application of the Kutta éondition resulted in a progressively deeper
low pressure spike at the trailing cdge with Airfoil #1 (cf Fig. 8c & 13b).
This spike is removed with three-point extrapolation. This effect was less
pronounced with Airfoil #2 since the trailing edge was less sharp. The use
of the requirement that the trailing edge be a stagnation point gave about
as good results as the use of the extrapolation to che traiiing edge with the
less sharp trailing edge of Airfoil #2 (cf Fig. 8c & 13a). Three-point extra-
polation is the most appropriate condition, as is indicated by the ACL values
for Airfoil #1 in Table 2.

E. Effect of Order of Velocity Difference Expression Used in Kutta Condition

A first-order expression for the velocity is not suffiéiently accurate
and produced a low pressure spike at the trailing edge with Airfoil #1. This
spike was removed by the use of a second-order expression (Fig. 8c). Further
increass in order gave no improvement (Fig. 13d). Again these effects are
less evident with the less sharp trailing edge of Airfoil #2.

F. Effect of Ord.r of Velocity Difference Expression Used in Pressure Calculation
Calculation

Here again a first-order expression does not give an accurate pressure

distribution with Airfoil #1 (Fig. l4a). A second-order expression, however,
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is quite accurate, (Fig., 8c) and little further improvement occured with an
increase to third-order (Fig. 1l4b).

G. Effect of Order of Pressure Integration

Perhaps surprisingly, Sirnson's rule (second-order) did not give as
accurate a pressure integration as did the first-order trapezoidal rule.
This probably is a result of the fact that although the points on the
contour are equally spaced in the transformed plane, so that Simpson's
rule can be applied, they are not equally spaced in the physical plane.
Therefore, the truncation error term of the Simpson integration will be
dependent on the rate-of-change of the physlcal coordinate spacing, so
that, although the order is second, the coefficient may be high with a
resultunc loss in overall accuracy in regions of rapidly varying spacing.

H. Recommended Values

In view of the present results, 1% accuracy in 1lift can be achieved

with the following values for the numerical parameters:

(a) 37 points on the airfoil contour, spaced with smooth and gradual
concentration near the leading edge and with a few more closely
spaced points added near the trailing edge.

(b) 30 lines surrounding the airfoil.

(¢) Outer boundary at '0 chords.

(A) Coordinate system convergence criterfa of 107,

(e) Stream function convergence criteri. of 1074,

(f) Three-point extrapolation to trailing edge in satisfaction of
Kutta condition.

(g) Second-order difference expression for ve.iocity.

(h) Trapezoidal pressure integrationm.



28

These values are the minimum considered adequate for 1% accuracy in
1lift. The changes in force coefficients encountered with more stringent
values are summarized in Table 11 for Airfoil /1.

‘Items (f) - (h) are adequate for even higher accuracy. However, items
(a) - (¢) must be increased, and items (d) - (e) decreased for higher
accuracy. A change of the convergence criteria to 1075 is-relatively
inexpensive in computer time. However, computer time varies apprnximatély
linearly with the number of points on the airfoil and quadratically with
the number of lines surrounding the airfoil. More points on the contour
will obviously be required with more irregularly shaped bodies. The
computer time is not significantly affected by the shape with the same

number of points.



V. MULTIPLE-BODY SOLUTIONS

In the present study, the numerical results for potential flow about
two circular cylinders, aligned such that a line connecting the circle
centers is normal to the uniform free stream velocity, are compared with
the analytic solution for the pressure distribution on the cylinder
surfaces (Ref. 23). The cylinder axes were separated by three radii in
all cases. The outer boundary was located at 20 cylinder diameters from
the mid-point between the cylinders in all cases, and there were 40 n-lines
surrounding tiie bodies, except as noted.

As noted above, there are a number of different possible arrangements
in which the boundaries in a multiple~body field may be distributed around
the rectangular boundary of the transformed field. Many of these arrange-
ments are illustrated in Ref. 18-19, Three such arfangements were considered
in the present study (Fig. 22).

If the generating partial differential system for the curvilinear
coordinates is simply the pair of Laplace equations (P = Q = 0 in (2)), then
the coordinate lines have a tendency to be attracted, as it were, to convex
portions of the boundary and repelled from concave portions. This presents
a problem with the two-body segment arrangement shown in Fig. 22a, for,
with the n-coordinate having the same value on both bodies, the cut
connecting the bodies must also be a line of the same n-value. Conse-
quently, a concave region develops at the intersections of this cut with
the bodies. The resulting coordinate system is shown in Fig. 23a, and the
results for the surface pressure distribution in Fig. 23b are grossly in
error because of the large truncation error that occurs with the widely

spaced coordinate lincs in the regions of the cut intersections.
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However, coordinate system control, as discussed above, can be used
to attract the coorcinate lines into these concave regions. As noted above,
it is possible to attract the coordinate lines to specified lines and/or
points on the boundary and in the field. Various different combinations
of line and point attractions were considered and representative results
are shown in Figs. 24 and 25.

In Fig- 24a-e, the coordinate systems and pressure distributions
are shown for five amplitudes of point attraction of the n-lines (sur-
rounding the bcdies) to the cut intersections. The attraction decay factor
(see appendix ) was 0.5 in all cases given. Too large a decay factor is
ineffective, while too small a factor extends the attraction beyond the
local region of interest. The pressure distribution changes drastically
from that from that obtained without attraction (Fig. 23) as the attraction
amplitude is initially increased. The changes become progressively smaller
as the amplitude increases farther, with very little change from an
amplitude of 500 to one of 2000. (Although the best fit to the analytic
solution occurs with an amplitude of 250, this is only a fortuitous
circumstance, since the results are still chanéing with attraction amplitude
at that point.) This progressively diminishing effect of increasing
attraction amplitude is also evident in the force coefficiencs normal to the
free stream given in Table 12.

Comparison of Figs. 24d and 24f shows the effect of decreasing the
number of £-~lines passing between the bodies. The solution is not greatly
affected by the decrease in the number of lines except in the region of
the cut intetsections, where the angle between the £-line emanating from
the cut intersection and the n-line between the bodies is smaller. Too

small an angle between coordinate lines fncreases the local truncation
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error, so that it is necessary to avoid having the g-line emanating from
the cut intersection deviate greatly from 45°. This means that the point
spacing on the cut between the bodies should be nearly the same as that on
the body contours in the neighborhood of the cut intersections. Table 12
shows thét an addition of four lines between the bodies, by contrast,

had little effect.’

This need for relatively equal point spacing on the body contours énd
the cut between is further illustrated in Figs. 25b and 25d, where, with
fewer points nn the bodies, the smaller number of lines between the bodies
gives better results. The force coefficients results in Table 12 show a
further deterioration as still more lines are added between the bodies.
This figure also shows that, with this smaller number of points on the
bodies, the increasing attraction produces little change from an ampli-
tude of 560 to one of 1000, but a larger change then occurs at a larger
amplitude. Comparison of the force coefficients in Table 12 also shows
that 31 points on each body is not enough for accuracy.

That the addition of more points on the body contour in the neigh-
borhood of the cut intersection 1is inferior ko unifcrmly spaced points is
illustrated in Figure 26a. Here the additional closely spaced points on
the contour have caused the £-line angles on the contour near the cut
intersections to become too small. Some control ovér these angles can be
exercised by attracting the £-lines, as well as the n-~line to the cut
intersections, the results of which are i1illustrated in Figure 26b. How-
ever, the curvature of the £-lines in the field near the cut is now quite
large, and truncation error results therefrom. Other combinations of
attractions were also considured, and some results therefor are given in

Table 2. *



Table 12 also gives the force coefficients for some cases with closer
and more distant outer boundaries and cases with fewer n-lines surrounding
the bodies. These results show only small differences with 61 points on
the yodies.

Two other coordinate system configurations are shown in Figs. 27 and
28. That of Fig. 28 is similar to a bi-polar coordinate system and pro-
duces a near-perfect comparison with the analytic results on one cylinder
with 61 points on each body. With 31 points, however, the accuracy is not
quite as good. Since this configuration has different coordinate values
on the two bodf®s, cut intersections of the type discussed above do not
occur, and the coordinate system is much more regular near the bodies.
However, in contrast to the previous configuration, the results on the
other cylinder are not quite identical. This appeared to be a bi-stable
situation, with excellent comparison occuring on the other cylinder in
some cases, a result, perhaps, of the SOR iteration sweeping the field in
one direction. The force coefficient of the previously considered config-
uration #1 with 61 points on the contour (0.6534) is within 3% of the essentially
exact value (0.6331) obtained from Fig. 28b, The results of the configuration of
Fig. 27 could be improved by coordinate system control as used above.

‘Finally, Figs. 29 and 30 show the coordinate system and potential
solution for a multiple airfoil consisting of two Karman-Trefftz airfoils,
one being positioned as a separated flap. Coordinate system control has
been used to attract the coordinate lines to the airfoils and to the cut

between.
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VI. CONCLUSION

The use of body-fitted curvilinear coordinate systems allows numerical
potential flow solutions for fields containing any number of bodies of
arbitrary shape to be produced by finite-difference methods essentially as
easily as that about single simple bodies. The cemputer code is not
dependent on either the number or the shapes of the bodies, so that
different bodies can be treated by simple changes in the input. Further
investigation of the control of the coordinate system is presently in
progress with the purpose of improving the coordinate configuration in
concave regions created by cut intersections with members of multiple-
body combinations. Multiple-body viscous solutions are also under

development.



APPENDIX

DERIVATIVES AND VECTORS IN THE TRANSFORMED PLANE

Derivative Transformations

x - (?,;)y, (Ynfa - )’Efn)/J | (A.1)
(3y X, t (ngn - xnfﬁ)“ (. 2)
of 1
£, - (3E)x oy (gz)e,n - j(ynfe yef )(ac)e ;
'l(”"‘f") (A.3)
J E n E,v\ .
2 o a2 °f __g_ . ) ,
vef 2 + > (mfEs ZBfEn + ann)/ Jé + an + pr (A.4)

Unit Vectors in the Transformed Plane

Let nn be the unit vector normal to a line of constant n and Tn be

-~

the unit vector tangent to an n-line. Utilizing similar definitions for unit

normals and tangents to f=constant lines, there results

Vn

o, = l;ﬁl = (-ygf + "52)/& (A.5)
vE

N lagl = (y i - xng)//; (A.6)
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n : % X lf " (xﬁf M Ys!”f; (A.7)
Te z np X § --(xnf + yn!)/ﬁ; (A.8 )

where 1, j, and k are the unit vectors parallel to the conventional cartesian
coordinates x, y, and z, respectively. Vector components along the tangents
and normals to lines of constant £ and n are obtained by dotting the desired

vector with one of the above. For example, if F = Fli + sz. then the

component tangent to an n-line, Ft , 1is given by
~N

Ftn =Fet = (xEFl + yEFz)/l/; (A. 9)

Similarly, directional derivatives of a scalar function f in the above
directions can be obtained from the inner product of the gradient of f, V£,
and the appropriate unit vector. For example, the directional derivative

normal to an n-line is

a—anf- =, VE = (vE - BED/IN (A.10)
AL I

Integral Transformation

Let S be the closed cylindrical surface of unit depth whose perimeter

is specified by the contour I', in the physical plane (Fig. 1), and whose

1

outward unit normal at any point is n(x,y). {(Note that this is the unit normal

to the n-line coincident with I'..). Then,

1
Emax
Iz !f(X.)’)n(xo)')ds = ff[x(i.nl).)'(iml)](xgj - ygi)dE (A1)
8 emin
where n, is the value of non ' , £ and [ are the minimum and maximum
1 1 min max

values of £, and x€ and Ye are evaluated al&ng n
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Coordinate System Control

The effec. -. changing the functions P(£,n) and Q(§,n) on the coordi-
nate system is discussed in some detail in Ref. 18 and 19. One particularly
effective procedure is to choose P and Q as exponential terws, so that the

coordinates are generated as the solutions of

g *+E. -1

xx © yy 5y 8, sgn(E - g exp(-c |g - £ ])
m
- - -d /Tt = . - 7
351 bj sgn(§ Ej)exP( dj (¢ Ej) + (n nj) )
n
Tex ¥ Nyy = -151 a, sgn(n - ni)eXP(-ciln - ”i|)
- J 7 Y
- b n - -d - Z
jfl J sgn(n nj)exp( 3 (¢ &j) + (n nJ) )
£ Q(g,n) (A.13)

where the positive amplitudes'and decay factors are not necessarily the same

in the two equations. Here the first terms have the effect of attracting £-lines to
the £ = Ei lines in Eq. (A.12}, and attracting n-lines to the rn = ng lines in
(A.13). The second terms cause f-lines to be attracted to the points (Ej,nj)

in (A.12), and n-lines to be attracted to the points (gj,nj) in (A.13).

Several examples of the use of coordinate system control are given in Ref.

18 and 19.
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TABLE 2

Comparison with Analytic Solution - Airfoil /1

E—

Case 4aC AC N°° . NZ

Points on Body

37 1

43
47

6
2
3
6l 6
67 20
73 5
127 1

L

Points to », « at 10

30 32
60 7

Points to =, = at 20

30 12
60 8
Location of =,
5 11
10 7
Location of =,
10 32
20 8
Location of =,
20 12
40 9

Step

Step

Step

-0.0087 0.
0.0059 -0.
0.0120 -0.

-0.0577 -0.

-0.0019 0.
0.0019 -0.
0.0006 0.

-0.0080 0.
0.0032 -0.

~-0.0169 0.

-0.0057 0.

Size 10/60 avg.

0.0296 -0.
0.0032 -0.

Size 20/60 avg.

—000080 00
-0.0057 0.

Size 40/60 avg.

Location of «», 30 Points to «

5 11
10 32
20 12

-0.0169 0.
-0.0100 0.

0.0300 -0.
-0.0080 R
-0.0169 0.

D

0102
0008
0212
0325
0040
0046
0017

0038
0026

0078
0010

0067
0026

0038
0010

0078
0028

0067
0038
0078

6-03
8-03
1-03
4-03
1-03
7-03
6-03

(V-2 SR F SN N
WOWHWLWO

1.21-03
1.38-03

5.65-03
4.85-04

2.10-03
1.21-03
5.65-03



TABLE 2 (CONTINUED)

Case AC aAC

L D ® 2
Location of =, 60 Points to =
10 7 0.0032 ~-0.0026 3.78-01 1.38-03
20 8 -0.0057 0.0010 3.64-01 7.89-04
40 9 -0.0100 0.0028 3.86~01 " 4.85-04
80 10 -0.0120 0.0041 3.56-01 1.11-03

Coordinate System Convergence Criteria, 37 Points on Body

10-2 13 -0.1691 0.0049 3.42-01 3.80-03
10-3 14 -0.0118 0.0108 3.36-01 3.14-03
10-4 15 -0.0108 0.0103 3.35-01 2.09-03
10-5 16 -0.0087 0.0103 3.35-01 2.06-03

Coordinate System Convergence Criteria, 67 Points on Body

10-3 18 -0.0345 0.0035 3.38-01 1.28-03
10-4 19 -0.0051 0.0040 3.37-01 1.24-03
10-5 20 -0.00i1.9 0.0040 3.37-01 1.31-03
Stream Function Convergence Criteria
10-2 21 ~-0.0687 ~0.1066 3.32-01 2.14-02
10-3 22 . 0.0548 -0.0084 3.37-01 1.22-03
10-4 23 -0.0096 0.0047 3.37-01 1.26~03
10-5 20 -0.0019 0.0040 3.37-01 1.31-03
Order of Extrapolation for Kutta Condition
: 24 -0.0044 ~0.0046 3.29-01 1.16-02
2 25 0.0027 -0.0046 3.29-01 1.93-03
3 5 0.0019 -0.0046 3.29-01 2.07-03
Stagnation
Point 26 0.0581 -0.0050 3.30-01 1.18-02
Order of Velocity for Kutta Corndition
1 27 -0.0814 -0.0041 3.28-01 6.61-03
2 5 0.0019 ~-0.0046 3.29-01 2.07-03
3 28 0.0083 -0.0047 3.29-01 3.08-03
Order of Velocity for Pressure Calculation
1 29 0.0722 - 0.0109 3.29-01 2.07-03
2 5 0.0019 -0.0046 3.29-01 2.07-03
3 30 0.0084 -0.0015 3.29-01 2.07-03
Order of Pressure Integration
1 7 5 0.0019 -0.0046 3.29-01 2.07-02
2 71 0.0040 -0.0087 3.29-01 2.07-03



Note:

Legend:

TABLE 2 (CONCLUDED)

Case numbers correspond to those of Table 1.

The comparison of the numerical results with the analytic
solutions is presented in terms of the following quantities:

ACL

ACD

N

~:

1lift coefficient error (numerical minus analytic)

drag coefficient error (analytic is zero)

maximum norm of stream function error (maximum absolute
difference between numerical and analytic values over
entire field)

Euclidean norm of relative stream function error (root-
mean-square over entire field of difference between
numerical and analytic values relative to analytic
value)



TABLE 3

Comparison with Analytic Solution - Airfoil #2

Case ACL ACD Nqn NZ

Points on Body

43 2 -0.0633 0.2135 1.11-01 2.96-02
47 3 0.0023 0.2487 1.10-01 2.31-02
53 4 0.0086 0.2580 1.09-01 7.21-03
61 6 -0.0741 -0.0211 1.57-01 6.68-03
67 20 0.0475 -0.0250 3.13-02 1.04-03
73 5 0.0890 0.0990 1.11-01 2.05~-02
127 1 0.0973 -0.0197 1.11-01 1.71-02
Points to «, = at 10

30 32 0.0433 -0.0253 3.93-02 2.63-03
60 .7 0.0307 -0.0217 4.11-02 2.02-03
Points to », @ at 20

30 12 0.0412 -0.0280 4.67-02 1.48-03
60 8 0.0171 -0.0159 4.47-02 2.25-03
Location of », Step Size 10/60 Avg.

5 11 0.0929 -0.0423 4.68-02 6.86-03
10 7 0.0307 -0.0217 4.11-02 2.02-03
Location of », Step Size 20/60 Avg.

10 32 0.0433 -0.0253 3.93-02 2.63-03
20 8 0.0171 -0.0159 4.47-02 2.25-03
Location of «, Step Size 40/60 Avg.

20, 12 0.0412 -0.0280 4.67-02 1.48-03
40 9 0.0156 -0.0146 5.45-02 2.23-03
Location of », 30 Points to =

5 11 0.0929 -0.0423 4.68-02 6.86-03
10 32 0.0433 -0.0253 3.93-02 2.63-03
20 12 0.0412 -0.0280 4.67-02 1.48-03
Location of =, 60 Points to =

10 7 0.0307 -0.0217 4.11-02 2.02-03
20 8 0.0171 -0.0159 4.47-02 2.25-03
40 9 0.0156 -0.0146 5.45-02 2.23-03
80 10 0.0176 -0.0151 6.86-02 5.22-03



TABLE 3 CONTINUED)

Case ACL ACD Neo N2

Coordinate System Convergence Criteria

10-2 17 -0.4180 -0.0204 4.81-02 6.40-03
10-3 18 -0.0619 -0.0245 3.09-02 1.37-03
10-4 19 0.0430 -0.0249 3.13-02 8.89-04
10-5 20 0.0475 -0.0250 3.13-02 1.04-03
Stream Function Convergence Criteria
10-2 21 0.6407 -0.2199 4.01-01 3.62-02
10-3 22 0.1192 -0.0620 9.32-02 4.18-03
10-4 23 0.0487 -0.0255 3.92-02 2.20-03
10-5 20 0.0475 -0.025C 3.13-02 1.04-03
Order of Extrapolation for Kutta Condition

1 © 24 0.0857 0.0989 1.11-01 2.05-02

2 25 0.0902 0.0991 1.11-01 2.05-02

3 5 0.0890 0.0990 1.11-01 2.05-02
Stagnation '

Point 26 0.0881 0.0990 1.11-01 2.05-02
Order of Velocity for Kutta Condition

1 27 0.1150 0.0997 1.18-01 3.62-03

2 5 0.0890 0.0990 1.11-01 2.05-02

3 28 0.1057 0.0995 1.15-01 3.11-03
Order of Velocity for Pressure Calculation

1 29 0.02401 0.1397 1.11-01 2.05-02

2 5 0.0890 0.0990 1.11-01 2.05-02

3 30 0.0744 0.0917 1.11-01 2.05-02
Order of Pressure Integration

1 5 0.0890 0.0990 1.11-01 2.05-02

2 31 -0.2298 0.0879 ‘ 1.11-01 2.05-02

Note: Cose numbers correspond to those of Table 1.
Legend:

The comparison of the humerical results with the analytic
solutions is presented in terms of the following quantities:



AC

AC

TABLE 3 (CONCLUDED)

11ft coefficient error (numerical minus analytic)
drag coefficient error (analytic is zero)

maximum norm of stream function (maximum absolute difference
between numerical and analytic values over entire field)

Euclidean norm of relative stream function error (root-mean-
square over entire field of difference between numerical
and analytic values relative to analytic value )



Case

Points on Body

37 1
43

47

61

67 2
73
127

UL ORNRWNO

Iterations and Computer Time - Airfoil #1

IT

95
105
106
132
151
172
401

Points at =, @ at 10

30 32
60 7

116
227

Points to », = at 20

30 12
60 8

165
290

cs

TABLE 4

Location of =, Step Size 10/60 avg.

5 11
10 7

Location of =,

10 32
20 8

Location of =,

20 12
40 9

Location of «, 30 Points to «

5 11
10 32
20 12

123
227

Step Size 20/60 é;g.

116
290

Step Size 40/60 avg.

165
360

123
116
165

IT, ITgq
60 77
62 81
65 83
79 95
83 114
96 100

197 195
53 73
73 79
58 80
74 82
47 69
73 79
53 73
74 82
58 80
75 86
47 69
53 73
58 80

IT

78
84
92
124
121
156
348

101
188

125
208

79
188

101
208

125
232

79
101
125

CIR

CT.,,

HFWwROoNEe e~ O

157
114
:19
104
128
:10
157

:58
:21

144
:13

: 06
:21

:58
:13

244
134

:06
158
LA

CTpsr

0:56
1:09
1:11
1:52
1:59
2:35
7:46

1:27
1:39
1:49



TABLE 4 (CONCLUDED)

Case IT,. IT IT IT CT

0 90 CIR cs CTpgt

Location of », 60 Points to «

10
20
40
80

Coordinate

10-2
10-3
10-4
10-5

Coordinate

10-3
10-¢
10-5

7 227 73 79 188 7:21 4:06
8 290 74 82 208 10:31 5:44
9 360 75 86 232 11:34 5:54
10 446 78 91 258 14:13 5:01

System Convergence Criteria, 37 Points on Body

13 38 59 78 78 0:30 0:57
14 54 60 77 78 0:39 0:57
15 75 60 77 78 0:49 1:16
16 95 60 77 78 0:57 0:56

System Convergence Criteria, 67 Points on Body

18 83 114 121 1:59
19 116 83 114 121 1:58 1:59
20 151 83 114 121 2:28 1:59

Stream Function Convergence Criteria

10-2
10-3
10-4
10-5

Note #1:

Note #2:

Legend:

21 151 6 25 30 2:28 0:40
22 151 21 54 60 2:28 1:02
23 151 51 87 90 2:28 1:30
20 151 83 114 121 2:28 1:59
Case numbers correspond to those of Table 1.
CPU time is given in MINUTES:SECONDS. These times are
subject to some variation depending on the operating
conditions at the time of the run.
ITCS - Iterations for coordinate system
ITO - Iterations for 0° potential flow solution
IT90 - Iterations for 90° potential flow solution
ITCIR - Iterations for éirculation potential flow solution
CTCs - CPU time for coordinate system
CT - CPU time for complete potential flow solution

PSI

20 14



TABLE 5

Iterations and Computer Time - Airfoil #2

Case ITCS ITO IT90 ITCIR CTCS CTPSI

Points on Body

43 2 95 53 72 82 1:27 1:10
37 3 104 57 77 92 1:17 1:09
53 4 118 59 81 106 1:38 1:21
61 6 144 65 88 124 2:84 2:09
67 20 162 68 92 141 2:40 2:11
73 5 182 75 100 157 3:25 2:28
127 1 419 131 170 350 12:56 1:01
Points to =, = at 10
30 32 125 36 61 101 2:1 2:01
60 -7 239 42 75 188 7:54 3:45
Points to », = at 20
30 12 225 37 64 125 4:01 2:04
60 8 299 39 71 208 9:58 3:54
Location of =, Step Size 10/60L Avg.
5 11 86 34 57 79 1:33 1:19
10 7 239 42 75 188 7:54 3:45
Location of =, Step Size 20/60 Avg.
10 32 125 36 61 101 2:11 2:01
20 8 299 39 71 208 9:58 - 3:54
Location of =, Step Size 40/60 Avg.
20 ° 12 225 37 64 125 4:01 2:04
40 9 374 37 69 231 i1:60 3:57
Location of =, 30 Points to =
5 11 86 34 57 79 1:33 1:19

10 32 125 36 61 101 2:11 2:01
20 12 225 37 64 125 4:01 2:04



TABLE 5 (CONCLUDED)

Case IT IT IT IT CcT CcT

cs 0 90 CIR Cs PSI

Location of =, 60 Points to =
10 7 239 42 75 188 7:54 3:45
20 8 299 39 71 208 9:58 3:54
40 9 , 374 37 69 231 11:60 3:57
80 10 463 36 68 257 15:34 4:14
Coordinate System Convergence Criteria

17 52 85 97 140 1:02 2:04
10-3 18 88 71 92 141 1:32 1:55
10-4 19 125 69 92 141 2:11 1:54
10-5 20 162 68 92 141 2:40 2:11
Stream Function Convergence Criteria
10-2 21 162 3 12 22 2:40 0:35
10-3 22 162 10 i1 61 2:40 2:53
10-4 23 162 35 61 101 2:40 1:31
10-5 20 162 68 92 141 2:40 2:11

Note #1: Case numbers correspond to those of Table 1.

Note #2: CPU time is given in MINUTES:SECONDS. These times are
subject to some variation depending on the operating
conditions at the time of the run.

Legend:
ITCS - Iterations for coordinate system

ITO - Iterations for 0° potential flow solution

ITgo - Iterations for 90° potential flow solution

ITCIR - Iterations for circulation potential flow solution
CTCS - CPU time for coordinate system
cT - CPU time for complete potential flow solution

PSI



TABLE 6

Comparison with Analytic Solution - Zero Lift and Other Angles

Case AC AC

L D

a = ~20.8596 (zero 1lift) 33 -0.0440 -0.0224
a =~ 1,6746 (zero 1lift) 34 0.0000 0.0020
a=«~1,65 35 0.0000 -0.0037
a= 2.66 36 0.0128 -0.0358

Legend: See Table 2 or 3. Case 33 is Airfoil #1, and the others are Airfoil

f2.

N

2.01-01
6.38-03
6.12-03
1.09-02

N,

8.89-03
5.98-04
2.98-03
6.87-04



TABLE 7

Iterations and Computer Time - Zero Lift and Other Angles

Case IT ITO 1T90 ITCIR CTCS CTPSI

cs

a = -20.8596 (zero lift) 33 401 197 195 348  11:57  7:36
a = - 1,6746 (zero 1lift) 3% 419 131 170 350  12:56  6:43
a =« 1,65 35 377 237 172 332 11:10 7:38
= 2.66 36 377 237 172 332 11:10 7:38

Legend: See Table 4 or 5. Case 33 {s Airfoil #1, and the others are
Alrfoil #2.
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Points on Contour - Airfoil #1
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TABLE 10

Karman-Trefftz Transformation Parameters (Ref. 1)

"

, k=1, 2, ==, N

R LY
e m mhMe \ BT M

Transformation:

4
k
TS
This transforms a circle 1in the Z_ plane into the airfoil in the Z, plane
N
through N successive transformationms.
Airfoil #1 Airfoil #2
N=3 N =1
Rl = (0.737277 + 10.6755902 Rl = 1.0 + 10
Ll = 0+ 10 L1 = -1,.0 + 10 |
= ° lo
5 160 Cl 9
R2 = 0.39875 - 10.91706 Circle Center: -0.04405 + 10.03
L2 = 0+ i0 Circle Radius: 1.04448
g, = 200° Airfoil Chord: 3.9081497
R3 = 0.93667 - 10.35021
L3 = -0.843 - 10.315866
C3 = 12
Circle center = 0 + i0
Circle radius = 1.0

Airfoil Chord

3.4647



TABLE 11

- 4.
‘@i‘)‘a;f;*\:,'z. ChCT i

JF POOR QUALITY

Changes in Force Coefficients with Increase from Adequate
Parameter Values - Airfoil f#1

Parameter

Number of Points on Airfoil

Number of Lines Around Airfoil
Radius of Outer Boundary

Coordinate Convergence Criteria
Stream function Convergence Criteria
Kutta Extrapolation Order

Kutta Velocity Order

Velocity Order

Pressure Integration Order

Change

37 to 67
30 to 60

10 to 20
10~ to 1073
107" to 1073
2to3

2 to 3

2 to 3

1l to 2

o

0.009 to 0.002
0.008 to 0.003
0.008 to 0.006
0.005 to 0.002
0.01 to 0.002
0.003 to 0.002
worse

worse

worse

Y

0.01 to 0.004
0.004 to 0.003
0.004 to 0.001
no change
0.005 to 0.004
no change
worse

0.005 to 0.002

worse
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Physical Plane

n=n,

Region D*

L-—L-—L_L—dl——dL—L

n=n,

r

T3

Figure 1.

Transformed Plane

Field Transformation - Single Body
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Figure 3. Computational Grids - Single and Two Body Regions



Figure 4

Extrapolation Points for Application of Kutta Condition
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Effect of Contour Point Distribution on Pressure Distribution -
(Solid line is analytical; symbols are numerical.)
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Figure 9. Effect of Contour Point Distribution on Streamlines - Airfoil /1,
(Solid line is analytical; csymbols are numerical.)
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(d.) Third-Order Velocity (Case 28)

Effect of Extrapolation and Velocity Orders for Kutta

Condition - Airfoil #1.
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(Solid line is analytical;
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Figure 14. Effect of Order of Velocity in Surface Pressure Calculation -

Airfoil #1. (Solid line is analytical; symbols are numerical.)
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Figure 15. Effect of Contour Point Distribution on Pressure Distribution -
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(a.) 37 Points (Case 6) (b.) 67 Points (Case 20)

(c.) 73 Points (Case 5) (d.) 127 Points (Case 1)

Figure 16. Effect of Contour Point Distribution on Streamlines -
Airfoil #2. (Solid line is analytical; symbols are
numerical.)
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Figure 19
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(a.) Configuration #1
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(c.) Configuration #3

Figure 22. Two-Body Coordinate System Configurations.
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(b.) Pressure Distribution.

Figure 23. Coordinate System and Pressure Distribution for Two Circles -
Cc-figuration #1, 61 Points on Each Body.
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Figure 24. Controlled Coordinate System and Pressure Distribution for Two
Circles - 61 Points on Each Body. )
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Figure 24. (Continued)



ORIGINAL { 77TL 1S
OF POGR GUALITY

0.0,

‘ ‘
1
.30, .
-2.000
' ]
s )
-1.00L
4. 00, i
: |
$.00.
496 T "0
(e.) 2000 Attraction to Cut Intersection
ﬁ\
AN ,,5/,/’:\\\\,\\ . |
\\\(\‘\( :"‘\_« v%ﬁj’;’/’_ﬁ\“\‘\:‘}-x'\\{\','ﬁ ‘\. 0.00). / F o
N G AR Y € Y ' pF
SRR AR 7
NN AV e N
X 7 !
!
-2.00L /‘
. /E
) ™ g
-1.000L »-N £/
A ‘5\ Lz ~
\‘\ e ‘
--.OD‘_ 3\‘ ‘é ,
il \ / 1
" a ]
-8.00_ \ . ﬂ/ !
' L !
' - t
-6.00L - .
Ty : 7%

(f.) 1000 Attraction to Cut Intersection, Fewer Lines Between
Bodies

Figure 24. (Concluded)



I QuAUfY

+3.00.

. ' //
-9.00\ \\U/ /

‘ /
-4, 00} /’

-§.00. /
/
) /T
-4, 004 \/ .
-3.82 - .80
13
2
i
/Pi
4
;o
;B
;
1’7‘
[ 4
‘8
’
‘
e
|
l
'
) %0

(b.) 1000 Attraction to Cut Intersection

Figure 25. Controlled Coordinate System and Pressure Distribution for Two
Circles - 31 Points on Each Body.
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Figure 28, Coordinate System and Pressure Distribution for
Two Circles, Configuration #3.
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