8 research outputs found

    SYNTHESIS: A Platform of Platforms for Integrated Management, Curation, and Visualization of Digital Cultural Experiences through VR and AR Technologies

    Get PDF
    SYNTHESIS is a platform of platforms (PoP) for the management, curation, and creation of digital cultural experiences related to cultural heritage material (artifacts), and their visualization through mobile applications and virtual and augmented reality (VR/AR) technologies. The digital cultural experiences may relate to specific cultural heritage monuments or exhibits of museum collections and may reside either on site or remotely. The platform provides a comprehensive supervisory tool that allows curators to select digital artifacts from different databases around the topic of interest, associate them through narratives that translate them into a sequence of semantic correlations that can be visualized using VR/AR technologies. The SYNTHESIS of platforms contributes to the creation of a new condition for the promotion of cultural heritage sites, museums, and exhibits, and facilitates the management and interaction of the user-visitor with them. The platform contributes to the creation of an innovative system for the management and curation of large volume of digital material related to an exhibit and consequently its promotion by unifying the stages of: (a) production of digital content; (b) connection of additional digital multimedia material related to the digital content; (c) curation of the digital content and transformation to a digital experience in accordance to a desired narrative; and (d) visualization of the digital experience in-situ or remotely with the use of mobile apps and VR/AR technologies

    Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture

    Get PDF
    Risk-based security is a concept introduced in order to provide security checks without inconveniencing travelers that are being checked with unqualified scrutiny checks while maintaining the same level of security with current check point practices without compromising security standards. Furthermore, risk-based security, as a means of improving travelers’ experience at check points is expected to reduce queueing and waiting times while improving at the same travelers’ experience during checks. A number of projects have been funded by the European Commission to investigate the concept of risk-based security and develop the means and technology required to implement it. The author is the Coordinator of two of the flagship projects funded by EC on risk-based security: FLYSEC and TRESSPASS. This chapter discusses and analyses the concept of risk-based security, the inherent competing mechanism between risk assessment, screening time and level of security, and means to implement risk-based security based on anomaly detection using deep learning and artificial intelligence (AI) methods

    Optimal Decision Fusion in Multiple Sensor Systems

    Get PDF
    The problem of optimal data fusion in the sense of the Neyman- Pearson (N-P) test in a centralized fusion center is considered. The fusion center receives data from various distributed sensors. Each sensor implements a N-P test individually and independently of the other sensors. Due to limitations in channel capacity, the sensors transmit their decision instead of raw data. In addition to their decisions, the sensors may transmit one or more bits of quality information. The optimal, in the N-P sense, decision scheme at the fusion center is derived and it is seen that an improvement in the performance of the system beyond that of the most reliable sensor is feasible, even without quality information, for a system of three or more sensors. If quality information bits are also available at the fusion center, the performance of the distributed decision scheme is comparable to that of the centralized N-P test. Several examples are provided and an algorithm for adjusting the threshold level at the fusion center is provided

    Combined Deep Learning and Traditional NLP Approaches for Fire Burst Detection Based on Twitter Posts

    Get PDF
    The current chapter introduces a procedure that aims at determining regions that are on fire, based on Twitter posts, as soon as possible. The proposed scheme utilizes a deep learning approach for analyzing the text of Twitter posts announcing fire bursts. Deep learning is becoming very popular within different text applications involving text generalization, text summarization, and extracting text information. A deep learning network is to be trained so as to distinguish valid Twitter fire-announcing posts from junk posts. Next, the posts labeled as valid by the network have undergone traditional NLP-based information extraction where the initial unstructured text is converted into a structured one, from which potential location and timestamp of the incident for further exploitation are derived. Analytic processing is then implemented in order to output aggregated reports which are used to finally detect potential geographical areas that are probably threatened by fire. So far, the part that has been implemented is the traditional NLP-based and has already derived promising results under real-world conditions’ testing. The deep learning enrichment is to be implemented and expected to build upon the performance of the existing architecture and further improve it

    Chapter Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture

    Get PDF
    Risk-based security is a concept introduced in order to provide security checks without inconveniencing travelers that are being checked with unqualified scrutiny checks while maintaining the same level of security with current check point practices without compromising security standards. Furthermore, risk-based security, as a means of improving travelers’ experience at check points is expected to reduce queueing and waiting times while improving at the same travelers’ experience during checks. A number of projects have been funded by the European Commission to investigate the concept of risk-based security and develop the means and technology required to implement it. The author is the Coordinator of two of the flagship projects funded by EC on risk-based security: FLYSEC and TRESSPASS. This chapter discusses and analyses the concept of risk-based security, the inherent competing mechanism between risk assessment, screening time and level of security, and means to implement risk-based security based on anomaly detection using deep learning and artificial intelligence (AI) methods

    Chapter Combined Deep Learning and Traditional NLP Approaches for Fire Burst Detection Based on Twitter Posts

    No full text
    The current chapter introduces a procedure that aims at determining regions that are on fire, based on Twitter posts, as soon as possible. The proposed scheme utilizes a deep learning approach for analyzing the text of Twitter posts announcing fire bursts. Deep learning is becoming very popular within different text applications involving text generalization, text summarization, and extracting text information. A deep learning network is to be trained so as to distinguish valid Twitter fire-announcing posts from junk posts. Next, the posts labeled as valid by the network have undergone traditional NLP-based information extraction where the initial unstructured text is converted into a structured one, from which potential location and timestamp of the incident for further exploitation are derived. Analytic processing is then implemented in order to output aggregated reports which are used to finally detect potential geographical areas that are probably threatened by fire. So far, the part that has been implemented is the traditional NLP-based and has already derived promising results under real-world conditions’ testing. The deep learning enrichment is to be implemented and expected to build upon the performance of the existing architecture and further improve it
    corecore