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Chapter

Risk Assessment and Automated
Anomaly Detection Using a Deep
Learning Architecture
Stelios C.A. Thomopoulos

Abstract

Risk-based security is a concept introduced in order to provide security checks
without inconveniencing travelers that are being checkedwith unqualified scrutiny
checkswhilemaintaining the same level of securitywith current check point practices
without compromising security standards. Furthermore, risk-based security, as ameans
of improving travelers’ experience at check points is expected to reduce queueing and
waiting timeswhile improving at the same travelers’ experience during checks. A num-
ber of projects havebeen fundedby theEuropeanCommission to investigate the concept
of risk-based security and develop themeans and technology required to implement it.
The author is the Coordinator of two of the flagship projects funded by EC on risk-based
security: FLYSEC and TRESSPASS. This chapter discusses and analyses the concept of
risk-based security, the inherent competingmechanism between risk assessment,
screening time and level of security, andmeans to implement risk-based security based
on anomaly detection using deep learning and artificial intelligence (AI)methods.

Keywords: risk assessment, security, anomaly detection, deep learning,
neural networks, crowd simulation, control and command, surveillance,
risk-based security

1. Introduction

Risk-based security is built around the premise that information obtained from
observable aspects of human identity and possession and knowledge acquired about
hidden aspects of human capability and intent can be intelligently combined to
assess to some great extent of accuracy the threat a given individual poses to a
security system, be it an airport or a border crossing point (BCP). Then, in turn,
associating the estimated level of threat with a measure of risk by factoring in the
cost that the assessed threat can represent to the system that is being secured by
taking into account the impact and cost a given threat can have on a security
system, a risk-based security approach can be designed and implemented, whereby
security checks are tailored to be commensurate to the estimated risk each individ-
ual may pose, instead of being uniform irrespectively of the risk posed by each
individual, as is the case today. Taking into account that less than 5% of all individ-
uals can be a potential security risk, the savings in terms of time required to go
through risk-based security systems with speedier tests for the 95% of low to no risk
individuals can be significant, waiting times in security lines can be reduced and
thus the level of comfort and customer satisfaction be drastically improved.
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The concept of risk-based security is founded on the premise that less than 5% of
travelers represent a threat to the security of a border crossing point (BCP), it is
conceivable that by somehow identifying the risk-free travelers, the security checks
for those “trusted” travelers can be relaxed and sped up, leading into lower delays in
the security screening systems. By easing off the security checks on the “trusted” 95%
of travelers, the security screening process can focus on the potentially “suspicious”
5% of travelers, thus increasing the odds of identifying them more efficiently.

The concept of risk-based security is indeed promising in terms of improving
travelers’ experience by easing off security screening and reducing the overall time
required to spend at a security check-point. However, the difficulty in implementing
a risk-based security systems lies on: (a) developing and implementing non-intrusive,
GDPR1 compliant technology and systems that can estimate the risk level of each
traveler without inducing additional and cumulative delays; (b) testing such systems
before rolling them out in operational environments; and (c) estimate their perfor-
mance and efficacy under ideal conditions for obtaining performance bounds, calcu-
lating the cost of the required investment for implementing risk-based technologies;
and (d) calculate the degradation in performance when moving away from the
“ideal” operational conditions into realistic operational conditions.

The European Union (EU) and other international organizations promote this
approach through various initiatives. The European Commission (EC) issued the
“Smart Borders package” which aims to modernize the Schengen area’s external
border management by improving the quality and efficiency of border crossing
processes through the establishment of ‘Stronger and Smarter Information Systems
for Borders and Security’ [1]. The International Air Transport Association (IATA)
proposed a Checkpoint of the Future, designed to enhance security while reducing
queues and intrusive searches at airports by using intelligence-driven risk-based
measures [2]. Along these lines the EC funded the Research and Innovation project
FLYSEC [3] has developed and demonstrated an innovative, integrated, and end-
to-end airport security system facilitating risk-based screening with the introduc-
tion of novel intelligent technologies.

This chapter discusses a model of risk-based security developed over a number of
EU funded projects, highlights the need to using simulation in assessing the efficacy
of risk-based security technologies and protocols, and elaborates on the use of AI
and deep learning algorithms for assessing the perceived risk for each traveler based
on observable behavioral indicators (parameters), while factoring in information
acquired from various sources about hidden behavioral parameters.

2. Conventional versus risk-based security

Figure 1 shows a today’s conventional security check point whereby we distin-
guish two types of checks: (a) the “normal” check where all individuals in the security
check area are treated uniformly by applying the same level of security for all; and (b)
the “increased” security check point where travelers are channeled if they fail at
normal security check point. It should be pointed out that in this security system of
check points, currently implemented almost worldwide, the “increase inspection” is
usually the outcome of randomized selection of travelers to be subjected to an
increased level of inspection and is usually based on the principle of “importance
sampling2” methods. These methods try to detect a probabilistic event, such as the
existence of a suspect among travelers, with a certain degree of confidence by taking

1 GDPR compliance: Complete guide to GDPR compliance: https://gdpr.eu/
2 Importance sampling definition: https://en.wikipedia.org/wiki/Importance_sampling
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into account the probability of existence of such an event and possibly the range of
values the event can assume. These methods are “blind,” that it they draw samples
from the distribution indiscriminately and without takin into account any specific
attributes of the samples, and thus, they are also GDPR compliant. As it will be
pointed out further down in the chapter, risk-based methods need to pay special
attention to comply with GDPR as they gather and use information and knowledge
about individuals’ private data such as identity, possession, capability, and intent.

Risk-based security associates the estimated risk for each traveler with a com-
mensurate level of security scrutiny. Using prior information about each traveler
and sensory data obtained while the traveler is within the security perimeter of a
monitored area, a risk-based security system assigns a risk factor to each traveler
and depending on the value of the risk factor, the traveler is mapped to a level of
security scrutiny commensurate with the perceived risk. Although different num-
ber of levels can be associated with the estimated risk, for practical reasons, it is
sufficient to associate the entire range of risk values into three different levels of
security, Trusted/Registered (Green), Casual (Yellow) and Enhanced Security
(Red), as shown in Figure 2 [5].

In Figure 2,3,4 a number of GDPR-compliant technologies that can be used for
and contribute to the risk assessment are shown in and include: mobile app way

Figure 1.
Today’s security check-point concept (curtesy of TRESSPASS).

3 FLYSEC … . Complementing the ACI/IATA efforts, the FLYSEC European H2020 Research and

Innovation project (http://www.fly-sec.eu/) has developed and demonstrated an innovative, integrated and

end-to-end airport security process for travelers, enabling a guided and streamlined procedure from the

landside to airside and into the boarding gates, and offering for an operationally validated innovative concept

for end-to-end aviation security. FLYSEC has contributed towards: (i) innovative processes facilitating risk-

based screening; (ii) deployment and integration of new technologies and repurposing existing solutions

towards a risk-based Security paradigm shift; (iii) improvement of traveler facilitation and customer service,

bringing security as a real service in the airport of tomorrow; (iv) achievement of measurable throughput

improvement and a whole new level of Quality of Service; and (v) validation of technologies, devices and

applications that can be used to assess risk while the travelers move around in the security perimeter.
4 TRESSPASS … TRESSPASS focusses on risks emerging from people that use the BCP such as travelers

and staff, including people that act as such. This includes their luggage, both checked in and hand-held.

A typical DBT for a BCP is based on a subset of a typical set of attributes regarding such persons and their

travel group. In a DBT, threats are described using as building blocks in terms of Observable aspects: (a)

identity: specific people of which we know that they cause, or will not cause, a threat; and (b) possession:

assets that we know that can be used to generate a threat, e.g. explosives; whereas in terms of Hidden

aspects: (c) capability: people with specific skills with which they can, generate a threat; and (d) intent:

people that have an intent from which a threat can be derived.
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finding; dynamic travelers flow management; intelligent visual surveillance;
Wi-Fi/Bluetooth localization; RFID mobile tracking; and behavioral analysis & risk-
based security personnel mobile app.

Figure 3 represents a risk-based security check point that results from combin-
ing the three-level risk-based security screening of Figure 2 with the conventional
security screening of Figure 1. As it can been seen from Figure 3, the need for
assessing each traveler’s risk factor from various observable parameters requires
measuring somehow these parameters, of course in a GDPR compliant way, and
thus additional processing steps and capabilities that may induce additional delays
in screening process. Thus, the fundamental premise of risk-based security as a

Figure 2.
Association of three security scrutiny levels, namely “enhanced security,” “casual traveler,” and “trusted/
registered” with the estimated level of risk for each traveler. These three levels have been introduced in the
FLYSEC project [3] and carried over to the TRESSPASS project [4].

Figure 3.
Risk-based security check point: The standard (randomized scrutiny checks) security check point of Figure 2,
has been modified by introducing a three-level risk assessment process prior to the security scrutiny resulting in
three different security scrutiny levels at the security screening check point (reference).
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means of providing the same, at least, level of security as conventional check points
without inducing additional delays, seems to be in conflict with the additional delay
induced by additional screening tests required for estimating each traveler’ risk
index, unless the risk assessment process is done transparently while the travelers
move from the entry to exit points in a BCP (Border Crossing Point).

Figures 4 and 5 depict two block diagrams implementing the conventional
security screening process of Figure 1 and the risk-based security screening process
of Figure 3 respectively. From the two diagrams it is clear that additional screening
stages are required for assessing the risk for each traveler in risk-based security.
Each one of these additional risk assessing stages induce additional delays in the
security screening process, that add up to an overall additional time required for
risk-based security screening compared to the time required for security screening
through a conventional security check point.

Thus, it appears that risk-based security may require additional processing time
for estimating risk that may offset the benefits from faster security screening for
those travelers whose estimated risk classifies them in either the “trusted/registered
traveler” or “casual travelers” categories for whom security screening is relaxed and
thus faster than the time would be required to screen them in today’s conventional

Figure 4.
Configuration 1 (current BCP implementation).

Figure 5.
Configuration 2 (risk-based BCP implementation).
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check points of Figure 1. Granted that over 90% of travelers fall within these two
categories and will experience reduced delays at security screening, it remains to
determine if the aggregate benefits from the reduced security screening at check
points will trade off positively against the additional delays induced by the
additional screening points for determining each traveler’s risk as in Figure 5.

In order to quantify the cost–benefit trade-offs between the efficiency of a risk-
based security BCP and the delay induced by additional checks required for
assessing risk, the following experiment was conducted using Fraunhofer’s FhG
BCP Monte-Carlo agent-based simulator of a BCP configuration (curtesy of Fraun-
hofer Institute) [4].

For the simulation, we assumed a BCP with 1000 travelers, some exhibiting
normal (no risky) behavior, whereas the rest exhibit suspicious behavior, with the
following parameters:

• Distribution of traveler types: [Normal, Suspicious]: [0.9,0.1]

• Alarm threshold for each component: 0.5

• Risk calculation: According to the script below:

• Effectiveness calculation:

diff_1 ¼ mean of total suspicious people–total people stoppedð Þ

effectiveness ¼ 1=absolute diff_1ð Þ

• Ran over 10000 iteration with 100 travelers each time for both the
configurations.

Using the above script for generating travelers with the above choice of param-
eters, 10.000 iterations with 100 travelers each time were run for each one of the
two configurations of Figures 4 and 5, and the effectiveness (as defined above) of
each configuration was calculated. The results regarding the effectiveness (as
defined above) of each configuration are qualitatively summarized schematically in
the graph of Figure 6.

Figure 6 demonstrates the increase in effectiveness achieved by risk-based secu-
rity in a BCP using the FhG simulator. The effectiveness of the BCR risk-based
configuration 2 clearly surpasses that of the conventional BCT configuration 1. How-
ever, the diagram in Figures 6 and 7 does not include the delays induced by the
additional security check stages of the risk-based BSP configuration in Figure 5. If we
consider these delays, then the operating point of the risk-based BCP not only does it
move to higher efficiency but also to higher delays, as Figure 7 clearly demonstrates.

From Figure 7 it is clear that there is a competing mechanism between effec-
tiveness (another way of stating “comfort”) and delay induced by a risk-based

6
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security BCP versus a conventional BCP with randomized tests based on the theory
of importance sampling5. The aim of the two EU-funded projects FLYSEC and
TRESSPASS, coordinated by the author, is for FLYSEC to: (a) demonstrate that
there is technology available or can be developed to implement risk-based security
in a GDPR compliant way; (b) provide solid evidence of the risk-based security

Figure 6.
Effectiveness calculation of a conventional BCP with random security checks determined by importance
sampling versus risk-based BCP configuration: Effectiveness increases with the use of risk-based security in a
BCP.

Figure 7.
Effectiveness calculation of a conventional BCP with random security checks determined by importance
sampling versus risk-based BCP configuration taking into consideration the additional delays induced by the
additional risk assessment stages in configuration 2: Effectiveness increases with the use of risk-based security in
a BCP, while induced delays increase as well.

5 https://www.safeopedia.com/definition/784/safety-sampling
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screening as an effective and non-instructive means of providing security with
convenience to travelers; and for TRESSPASS to: (c) provide a comprehensive risk-
assessment framework for calculating risk systematically in accordance with the
TRESSPASS multi threat, multimodal that includes all four tiers of the access
model, i.e.

1.measures undertaken with third countries or service providers;

2.cooperation with neighboring countries;

3.border control and counter-smuggling measures;

4.control measures within the area of free move,

by taking into account estimates and information about.
Observable aspects of travelers’ behaviors, i.e.:
Identity: specific people of which we know that they cause, or will not cause, a

threat;
Possession: assets that we know that can be used to generate a threat, e.g.

explosives; and.
Hidden aspects of travelers’ behaviors, such as:
Capability: people with specific skills with which they can, generate a threat;
Intent: people that have an intent from which a threat can be derived as depicted

in Figures 8 and 9.
Thus, the aim of the two funded projects, namely FLYSEC and TRESSPASS, is to

provide solid evidence and the means for moving the operating point (OP) of a risk-
based BCP from the delay induced OP to the no-delay induced OP, or as close to it
as possible without inconveniencing travelers and in a GDPR compliant way, as
shown in Figure 10.

The greatest challenge in risk-based border management is the estimation of the
risk for each individual traveler. In TRESSPASS, a framework for modeling risk and
a systematic approach of quantifying risk are proposed as follows:

Figure 8.
Multi-modal, multi-tier TRESSPASS risk-assessment model.
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• Risk indicators are accurately estimated from available data collected from
background information.

• The risk for each traveler is calculated.

• Based on risk, the system adjusts the number and types of security checks
required for each traveler, in order to maintain a desired security level while
optimizing the security system performance in terms of efficiency, traveler
satisfaction and operational cost reduction.

Figure 11 summarizes in a comprehensive visual depiction the risk-based
framework used in TRESSPASS [4], and previously introduced in FLYSEC [3]. The
framework for risk-based security consists of an extensive use of technologies to

Figure 9.
Observable and hidden risk factors.

Figure 10.
Moving the operating point of a risk-based BCP to minimizing security check delays is the objective of both
FLYSEC and TRESSPASS EU-funded projects.
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estimate risk from both Observable and Hidden risk indicators across all four
security tiers and heavily tested, both in vivo and in vitro through simulation, in
carefully designed pilots across all three BCP modalities: air, land and sea.

Use of simulation in designing, testing, and assessing risk-based security
Paramount to the design and testing alternative designs of risk-based security

concepts, technologies and protocols, in order to achieve the increase in effective-
ness of BCPs with the parallel reduction of delays, is the use of simulation. iCrowd is
an agent-based simulator that can be used to implement and test different risk-
based concepts and technologies in a flexible and realistic simulation environment
[6]. Figures 12 and 13 show a photo-realistic virtual reconstruction of an airport
used extensively in simulating security scenarios and policies for a variety of
projects and pilot use-cases.

Figure 11.
TRESSPASS comprehensive risk-based security framework.

Figure 12.
Photo-realistic, agent-based simulation using iCrowd.
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2.1 The iCrowd simulator

The iCrowd Simulator is an agent-based simulation platform capable of handling
small-scale to large-scale crowds and calculating the change of the status of each
participating component depending on dynamic interactions with other entities or
the environment during simulation time [7, 8]. It can be utilized in any bounded
area, i.e. building interiors and exteriors, stadiums, or any exterior area e.g. public
places like squares, open-air festival etc. Currently, it is being used to simulate
crowd movement and crowd interactions in general, with the graphical display
being optional. As an agent-based simulation platform, different parameters for each
agent can be considered, such as physical, emotional, vital characteristics regarding the
crowd that will be observed (i.e. stress levels, health status), object/obstacle
parameters and also environmental parameters that can affect the final solution of
each simulated scenario performed.

Figure 13.
Queue lanes in a risk-based security checking system: Photo-realistic simulation provided by iCrowd.

Figure 14.
(a): Aspect of third-person camera. (b): Path planning example: The green line indicates the path the selected
agent (displayed are red) is following (c): Travelers enter the airport. The display of hold and hand luggage is
turned on. (d): Travelers go through the check-ins. The display of hold and hand luggage is turned on.
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iCrowd offers a fully operational flow simulation for travelers and personnel
inside an airport, as displayed in Figures 12 and 13. It enables the user to define
simulation scenarios, it is implementing a sophisticated crowd engine with collision
avoidance6 with multiple, different behaviors that can co-exist inside the same
simulation. It also supports distributed simulations, operating as an orchestrator. It
has been integrated with the C2 Web Portal OCULUS Air to communicate data,
such as displaying the position and the movement of simulated entities in real time,
and the Fusion and Ingestion Server to update travelers’ status accordingly
depending on their interactions with the airport’s hardware and other security
technologies (i.e. Beacons, RFID scanners and RFID tags for carry-on luggage
tracking), Figure 14(a)–(d).

3. Means for estimating risk that induce no further delays in the security
screening process

This section of the chapter presents and discusses implementable means for
assessing risk without inducing additional delays beyond what passengers experi-
ence with today’s screening process, but instead reduce the time it takes to go
through the security screening process by adjusting the level scrutiny in accordance
to the perceived risk.

3.1 Anomaly detection from passenger trajectories

If passenger trajectories at an airport, or any BCP by the same token, could be
tracked from the moment they enter the airport or the BCP in general, one could
conceivably be able to differentiate suspicious looking trajectories from trajectories
that would be expected for a passenger and thus classified as normal. Differentiat-
ing, however, between normal and abnormal behaviors may be a difficult proposi-
tion by itself, let alone that it should be done in accordance with privacy and GDPR
regulations.

In the work presented in [9, 10], those two issues were addressed as follows. To
develop a privacy and GDPR compliant tracking method, we assumed that passen-
gers are tracked using overhead cameras that identify passengers as point targets
from their top-down footprints (silhouettes); the footprints are reduced to a point
for each passenger and are tracked across the entire airport area or BCP. In the
initial phase of the study in [9, 10], it was assumed that passengers tracking was
perfect, i.e. that all passengers’ traces as they moved around the airport or BCP area
are (anonymously) identifiable and traceable. i.e. that the tracking system has
perfect knowledge of the position of each passenger at any time. Although the
assumption of perfect knowledge is idealistic, it allows us to get upper bounds on
the performance of the tracking system that can be used to make trade off calcula-
tions between cost of investment on cameras infrastructure versus the (theoreti-
cally) achievable accuracy of the risk calculation.

The difficulty in risk assessment based on trajectories stems from the difficulty
in defining what constitutes an abnormal behavior and how it can analytically be
described. In the approach in [9, 10] this has been overcome by defining what
constitutes a normal (expected) behavior, training the AI (Artificial Intelligence)
system to recognize normal behavior and test it with abnormal behaviors to reflect
loitering, jittering, and other deviations from expected “normal” behaviors.

Figure 14(a) through (d) are snap shots from the native visualizer of the
iCrowd simulator simulating an anomaly detection mechanism based on travelers’
tracking AI algorithm based on a Recursive Neural Network (RNN) [9, 10]. As
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discussed above, we assumed that travelers can be tracked anonymously using top-
down view cameras in compliance with GDPR and ethics regulations. Based on a
model of what constitutes a normal traveler route (trajectory) in an airport (or
similarly any other BCP), a convolutional recursive neural network was trained
with “normal trajectories” generated by the iCrowd simulator. Once the RNN is
trained with “normal trajectories,” travelers with “suspicious behaviors” are gener-
ated among travelers with “normal behaviors” and the algorithm is tested if it could
detect the “suspicious trajectories.” In Figure 14(b), the traveler with suspicious
behavior is color-coded red. The risk assessment algorithm detects and identifies
the suspicious traveler in Figure 14(d).

A complete technical description of the anomaly detection algorithm is given in
the references [9, 10]. Next, we summarize the results in [9, 10] in order to
demonstrate the possibility of implementing a risk-based security system that
monitors traveler risk continually without additional delays that can offset the
benefits of the risk-based approach.

3.1.1 Evaluation results

The evaluation of the risk assessment system of [9, 10] is done using the
Precision-Recall (PR) diagram, the Receiver Operating Characteristic (ROC) curve,
the Confusion Matrix, the F1-score and the Total Accuracy, as defined next:

• Precision = (# of true suspicious behaviors detected)/(# of total labeled
suspicious behaviors)

• Recall = (# of true suspicious behaviors detected)/(# of total suspicious
behaviors)

• Receiver Operating Characteristic (ROC) curve = Probability of detection
versus false alarm probability diagram

• Confusion Matrix = Normal versus abnormal confusion matrix

• F1-score = 2*[(Precision * Recall)/[Precision + Recall] which is the harmonic
average of Precision and Recall.

• Total Accuracy = (# of Total Assessments)/(# of Total Cases)

Figures 15–17 illustrate the PR diagram, the ROC curve and the Confusion
Matrix respectively. Eqs. 6 and 7 calculate F1-score and Total Accuracy
respectively. It should be reminded that the values of all evaluation metrics are
defined within the interval [0, 1]. The closer to 1 a value lies, the better the
achieved performance. Table 1 summarizes the values of the recruited evaluation
measures. The threshold score derived by the RNN architecture, by maximizing
F1-score, is 3.7.

Furthermore, the F1 score (i.e. the harmonic average between Precision and
Recall, Eq. (1)), along with the Total Accuracy, Eq. (2), the ROC AUC (Area Under
Curve), and Average PR score, are calculated in Table 1,

F1� score ¼ 2 �
Precision � Re call

Precisionþ Re call
(1)

Total Accuracy ¼ #of Successful Assessmentsð Þ= #of Total Casesð Þ (2)
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3.1.2 Analysis and relaxation of ideal tracking assumptions - experimentation
with noisy data

Most of the false negatives are abnormal trajectories that cannot easily be dis-
criminated from the normal even by a human operator. Soft thresholding could be
used in order to raise alerts for a human supervisor. On the other hand, the main
reason for the false positives is the fact that airport travelers chose to move in ways
that may not necessarily be similar to the normal trajectories. Large airport conges-
tions make the aforementioned phenomenon even more intense.

Although the conditions the risk assessment algorithm was evaluated under
assumed perfect knowledge of the traveler trajectories, relaxation of the assumption
of perfect knowledge of the traveler trajectories by injecting noise in the position
accuracy and/or assuming missing position data, did not have a considerable nega-
tive effect on the detection of abnormal trajectories as discussed next.

In order to assess the performance of the anomaly detection algorithm in realis-
tic conditions we introduce noise in the data to emulate the uncertainty in passen-
gers’ positions reports. The “noisy data” emulate the inaccuracy in the reports of the

Figure 16.
ROC curve.

Figure 15.
Precision-recall diagram.
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positions of the people in the space. Under realistic conditions, the tracking and risk
assessment system will receive data from inaccurate sources, such as cameras,
sensors, etc. used to estimate distances, mobile signal strength, etc.

In stark contrast, the iCrowd emulator produces people and their movements,
and periodically reports the exact ones (so without noise) their positions in the risk
assessment system. During the preprocessing of this data the possibility of the
system to add Gaussian noise, the “volume” of which (parameter σ2 of Gaussian
noise) is given by the user. This is obviously not intended to never be used in real
application, and exists only for experimentation. For examining the behavior of the
system under realistic conditions is required noisily data of different intensity.

Noise can enter the system in 2 cases: during training and during testing or
actual application. It is known that when training any neural network, it is good to
have variety in the data in which the network is exposed so that it is not over-
trained. So, it is expected that training with Noisy data can improve the overall
performance of the system. During testing or the actual implementation of the
system would definitely be better to have perfect data, but unfortunately this is
often impossible. In the context of the internship training and validation data were
performed with Gaussian noise with σ2 from 0 to 1.9 with step 0.1, testing data with
corresponding noise levels, and for each combination they were trained and evalu-
ation of the neural network, and metrics were calculated for each of them. The
metrics used were the Receiver Operating Characteristic curve (ROC curve), the
Precision-Recall curve (PR curve), and the corresponding Area Under Curve
(AUC) scores. These metrics give similar results, in the sense that they are defined

Measure Value

Average PR score 0.66

ROC AUC (Area Under Curve) 0.97

F1-Score 0.78

Total Accuracy 0.99

Table 1.
Values of the recruited evaluation measures.

Figure 17.
Confusion matrix.
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in [0,1] with value range [0,1], so the minimum AUC value is 0 and the maximum
is 1. Higher value means better true positive and true negative to false positive and
false negative ratio. The two metrics generally return similar results, but in our case
more weight is given in metric PR, as it offers a better estimate in cases that interest
us more the positive class of results, or the results consist of significantly more
elements of one of the two classes. Both features apply in the case of this risk
assessment system.

During the experiment, networks emerged that failed to find an acceptable
solution to why either they were trapped in a local minimum or they encountered
the phenomenon of exploding gradient. These cases appeared to be random and
independent of the parameters noise, so the network was initialized differently and
the training started from the beginning. The experiments were performed using 3
levels of congestion in space, low, moderate, and high, and for each of them 40
neural networks were created, one for each training/testing noise combination
mentioned above. For every desired network, 4 independent trainings were
conducted and the averages of metrics of interest were kept. The same test data,
corresponding to low-to-medium congestion, were used for testing all tested
models. The final results are presented below (Figures 18–20):

From the ROC AUC score graphs above, it is seen that the models that result in
the highest performance correspond to the following noise level in the training data:

For low noise data, the best performing data with AUC = 0.91 corresponds to
noise level σ2 = 0.8 in the training data.

For medium noise data, the best performing data with AUC = 0.96 corresponds
to noise level σ2 = 1.6 in the training data.

For high noise data, the best performing data with AUC = 0.95 corresponds to
noise level σ2 = 1.4 in the training data.

From the above results it is clear that the performance of the networks remains
constant when we apply noise to the test data. This implies that, since training
completed, the network remains robust and is not affected by data noise, so it can to
be used in a real application. Of particular interest are variations that occur when
present noise in education data. As mentioned above, training a neuron network
usually benefits from the difference in training data, as it helps learn the patterns
that appear in the data instead of the data itself. This obviously does not mean that
the more noise the better. In every network and for every application there is some
optimal noise level that offers the best performance. At cases with low and

Figure 18.
Training with low congestions data with different noise levels. Testing with low-to-medium congestion data.
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moderate congestion it seems that the Gaussian noise with σ2 � 0.5–0.8 has the best
performance, while for high congestion the training with noise performs better with
σ2 � 1.4. The variance has not yet been attributed to any of its specific features
network, model, training method, or data.

The evaluation results from the performance of the risk assessment algorithm
with the iCrowd simulator demonstrates that risk assessment can be done accu-
rately and without necessarily inducing additional delays in the security screening
process since the trajectory classification in normal or suspicious is done by over-
head cameras while the travelers go about their normal check-in routine at the
airport. To that extent, the proposed risk assessment method based on anomaly
detection on traveler trajectories can be used to improve the security screening
effectiveness while keeping the delay low (or moving the operating point in
Figure 10 from high delay to low.).

Furthermore, the proposed method can be used as a financial investment tool for
estimating the cost of acquiring the necessary equipment (in this case overhead
cameras) for a certain level (probability of accuracy) before purchasing it, and for
performing a trade-off analysis between the cost of acquisition of the necessary

Figure 19.
Training with medium congestions data with different noise levels. Testing with low-to-medium congestion
data.

Figure 20.
Training with high congestions data with different noise levels. Testing with low-to-medium congestion data.

17

Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture
DOI: http://dx.doi.org/10.5772/intechopen.96209



equipment and the expected performance improvement in risk assessment. This
way, the risk assessment simulator allows to be used as a cost–benefit tool for the
analysis of performance of a risk-based security system.

3.1.3 Analysis, relaxation of ideal tracking assumptions and conclusions

In its current form, the work in [9, 10] uses the time series of the coordinates of
the trajectories of airport travelers for deep learning. In the future, additional features
could be exploited. Such features are the velocity, acceleration and heading of the
traveler. Moreover, alternative deep learning architectures could be tested such as the
ones that account for contextual anomalies [11]. Furthermore, experiments on real-
world data of human trajectories should be conducted. Such data are expected to
contain more subtle and sophisticated anomalies. Finally, procedures that degrade
data quality and emulate more realistic operational conditions are being implemented
in order to test our system in the artificial presence of missing data, noisy data, data
association issues, as is the case with data capturing devices operating under realistic
operational condtions. Nevertheless, the present work and framework allow security
investment decisions on tracking devices and infrastructure to be made by assessing
the effectiveness of such an investment through the proposed risk assessment method
that envelops the performance of any such system from above by considering ideal
tracking conditions through perfect knowledge of all agents’ location. The proposed
method and framework is currently being extended to cover other border security
modalities, such as sea, land as well as multimodal crossing points in the context of
the EU-funded TRESSPASS project [4].

In conclusion, a deep learning architecture for real-time risk assessment based
on the trajectories of airport travelers as proposed in [9, 10] can be used for
assessing risk without interrupting or delaying the flow of passengers at an airport
or BCP at large. The architecture implements a deep RNN network and is fully
automated. Thus, it is expected to be of great use to the human operators monitor-
ing airport surveillance footages, reducing the potential errors and misjudges. The
proposed risk assessment system is tested on a realistic, synthetic data set generated
with the iCrowd simulator tailored to data sets representing traveler movements at
the Luxembourg airport; however, any airport or BCP could have been modeled and
used instead. The experimental results are very promising and they indicate that
further security improvements at airport control points are achievable through risk
assessment without inducing additional delays. This is due to the fact that the
suspicious behavior threshold, derived by the deep learning procedure in [9, 10],
lies at such a level so as to capture the malicious behavior while, at the same time,
reducing false-positive alerts.

3.2 Risk assessment using a security personnel application and IoT for behavior
and event detection through suspicious signs reporting

In [3] a GDPR compliant, mobile application was developed to allow security
personnel on the floor of an airport, or any BCP, report in real time and with full
respect to passengers’ anonymity, suspicious behaviors, such as nervousness,
unjustifiable sweating, etc., while passengers stand in security check lines. The
mobile app works in conjunction with Smart Queue, another enabler of risk-based
security [5]. Smart Queue is system that works in conjunction with passengers’ ID
documents; the system scans the passengers’ ID document upon their arrival at the
airport, or entry in the BCP, and in any subsequent security queue. This way, Smart
Queue not only does it count the number of passengers at a queue waiting to go
through security screening, but knows in which position in the queue each
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passenger stands. This way, the security personnel that uses the security mobile
app, needs to identify passengers only by their indexing number in the line they
stand when reporting to the risk assessment back office system any suspicious
behaviors about them. This way, anonymity of passengers and their personal data
protection are maintained by the security mobile app. The information sent this
way by the security personnel on the floor is then fused along with all other risk
assessment reports about each passenger and the risk estimate is updated. The risk
is reported to the security screening system and the passenger is classified in one of
the three risk categories, namely green, yellow or red, as mentioned earlier.

In FLYSEC [3], a novel system architecture for Security and Safety surveillance
systems that aims to identify adverse events or behaviors which may endanger the
safety of people or their well-being has been introduced [12]. Through proper
adaptations the system is applicable to a variety of monitoring systems for various
critical infrastructures, border crossing points, and other places of interest (e.g.,
malls, mass transport systems). The proposed architecture depicts an Internet of
Things (IoT) platform which comprises a sensing tier, a back – end processing and
intelligence tier and a front end for visualization and user feedback tier. In further
monitor and surveillance is performed mainly on the back – end intelligence com-
ponent which consists of two modules: (a) the event detection module combined
with a data fusion component responsible for the fusion of the sensors inputs along
with relevant high level metadata, which are pre-defined features that are corre-
lated with a suspicious event, (b) an adaptive learning module which takes inputs
from security personnel about the correctness of the detected events, and uses it in
order to properly parameterize the event detection algorithm. Moreover, a statisti-
cal and stochastic analysis component is incorporated which is responsible for
specifying the appropriate features to be used by the event detection module.
Statistical analysis estimates the correlations between the features employed in the
study, while stochastic analysis is used for the estimation of dependencies between
the features and the achieved system performance.

3.2.1 System architecture and interfaces

The system architecture is organized basically in three tiers: Sensing compo-
nents, back–end components, and front – end devices. The sensing components are
responsible for acquiring input which is either high or low level heterogeneous data
coming from visual sensors (CCD, IR, etc.), biometric sensors (fingerprints, other),
audio sensors (microphones), indoor localization equipment (Wi-Fi, beacons, RFID
scanners, etc.), document scanners which provide information about visitors (for
example travel documents in an airport, or purchase information recorded on
personal discount electronic cards), or human reports via terminal devices (e.g.
PDAs, mobile phones, tablets, etc.).

Front–end devices are responsible for visualizing information to end–users and
assisting their operations (for example official authorities receiving information
about detected incidents of great interest, or visitors getting navigation information
inside an infrastructure, etc.). Front–end devices consist of official management
terminal tools which manage the information collected and processed by the back–
end and sensing components and assist personnel operations by providing alerts
and notifications about significant events (Figure 21), visualizations of infrastruc-
ture’s layout along with real – time updates about essential points of interest (for
example size of queues, sensors viability, crowd distribution, etc.) (Figure 22).
Moreover, front – end devices include also mobile user devices which operate as a
personal assistant to passengers at an airport or a BCP. These mobile devices may
provide online and offline services regarding indoor navigation, recommendation
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Figure 21.
FlySec portal: - intelligent services visualization (upper); � automatic passenger classification (lower).

Figure 22.
FlySec portal - layout visualization.
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services (for products, point of interests, etc.), notifications and alerts. Finally, via
these devices each user may provide a feedback to the system about requests or
reports, about incidents that may concern their safety, or public security, or inter-
actions with the system in the context of system automatic personal servicing.

The back–end component contains the intelligence modules which process the
input coming from sensing devices and produce high level intelligence and meta-
data which assist operational personnel, enhance end–users’ experience and content
management services. These metadata are used either for further processing by
fusion algorithms, or presented to end – devices via visualization methods on each
end–device. Such metadata concerns directed paths for navigation services, fused
high level visual information, or information regarding recommendations, detected
incidents or notifications and alerts. Finally, the content management services
enable efficient data storing and retrieving operations in a scalable way. The back –

end component comprises a Message-oriented middleware in order to interconnect
all the sensing and processing component, provides a REST API to front–end
devices, supports web platforms interfaces (web – portal) and orchestrates the
accurate functionality of the whole system, Figure 23.

The core intelligence residing in the “Analytics, Data Fusion and Risk-based
Security Server” is presented in Section 3.3. The Data protection, Legal Compliance
and Ethics are important aspects that should be taken into consideration in the
system architecting process and are analyzed in Section 3.4.

3.2.2 Analytics, data fusion and risk-based security server

Back–end Intelligence component
The proposed system is designed with the aim of enabling automated surveillance

of large infrastructures such as airport, shopping malls, other. Such tasks incorporate
massive monitoring of infrastructure visitors in real – time. Monitoring operation is
based on an Internet of Things (IoT) installation architecture consisting of: (a)

Figure 23.
Reference architecture of the FLYSEC security and safety risk-assessment surveillance system.
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various types of sensing devices such as CCD surveillance cameras, QR/barcode
scanners, localization equipment (NFC tags, WiFi beacons, etc), RFID scanners, etc.,
(b) processing units, both centralized and/or distributed, and (c) terminal devices
such as mobile phones/tablets, computers, screens, electric signs, etc. (Figure 24).

Each sensor device may pre-process the acquired raw data (distributed
processing) and the results are gathered on a central cloud-computing infrastruc-
ture consisting of independent but co-operative intelligent component each one
dedicated for processing data and producing a specific intelligent response for the
system. Moreover, the output is transferred to terminal devices. This processing
procedure consists of the following steps (Figure 25).

The intelligent services are also responsible for automating the monitoring
procedure and enhancing visitors’ experience. Therefore, we propose two types of
services: (a) Assistance services and (b) Surveillance services.

Assistance services
These services aim at monitoring visitors’ behavior, profile, and interactions and

provide information that could facilitate their purpose of visit and indicate services

Figure 24.
Back-end intelligence system architecture.

Figure 25.
Flow of data from sensors to the cloud or terminal devices.
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that act as added value to visitors and simultaneously promote each infrastructure
expectations. Indicatively two representative use cases are Navigation services and
Recommendation engine.

• Navigation service corresponds to indoor localization and navigation of
infrastructure visitors in order to assist them in reaching their desired points of
interest (POI) not only as quickly as possible but also as efficient and desirable
as possible by taking into account user requirements (e.g. disabilities, specific
demands) and user location. Moreover, the service provide directions to each
visitor via their mobile device to various POIs and informs the user in order to
assist them reaching their goal of visit (for example provide information about
location of various products in a supermarket, or shops in a mall, or provide
information about flight departures or gates status in an airport)

• Recommendation engine aims at providing suggestion of POIs or services that
take place inside the infrastructure. The engine takes into account the user
profile (information that each user provides optionally during account
registration), user feedback (comments, rates), user location and contextual
information (time, season, POI status) and create recommendations that are
estimated to be assistive to user visiting experience but also promoting
infrastructure and POIs expectations and benefits.

Surveillance services
These services aim at monitoring visitors’ position and behavior and automatically

detect incidents of significant interest such as malicious behavior, anomalous crowd
trajectory flow etc. This solution is expected to enhance surveillance procedure for
large-scale circumstances where it is demanded in real time, the accurate surveillance
of a massive crowd. Indicatively we suggest two surveillance services: Suspicious
unattended luggage incidents detection and suspicious visitor loitering detection.

• Unattended luggage incidents detection aims at monitoring in parallel both
visitors and the luggage they carry. Such monitoring could be approached
either using CCD cameras and approximately detect abandoned luggage for a
long period of time, or by tagging luggage (for example using RFID tags)
where using RFID scanners in co-operation with visual sensors (CCD cameras)
and human reports (official surveillance personnel), estimate potential
unattended luggage incidents. Moreover, in order to monitor visitors’ position,
we propose the use of indoor localization techniques using mobile devices in
order to have an approximation of visitors’ location that willingly allow it, and
in addition visual sensors and human reports as well, in order to increase
system’s awareness of crowd location. Fusion of such information shall be
exploited by machine learning algorithms, which result to a coarse grain
estimation of visitors’ luggage abandonment.

• Suspicious loitering detection aims at monitoring visitors’ location and in real–
time detect anomalous visitors’ trajectories or positions that could be
suspicious for malicious purposes. Such components may incorporate visual
sensors (CCD cameras), human reports and mobile devices localization
techniques (Wi-Fi beacons, NFC tags).

Data fusion and Risk-based assessment
The Data Fusion unit inside the Analytics, Data Fusion and Risk-based Security

Server aims to perform Hard and Soft fusion of heterogeneous data [13–15]
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available from disparate sources of information such as physical sensors (“hard”
data) and human resources (“soft” data). Hard data fusion refers to the combina-
tion of raw information from multiple sources so as to achieve more accurate
estimations of the desired parameters (position, speed, other). To this end, a variety
of theoretical tools, such as Signal processing techniques, Kalman filters, Sequential
Monte Carlo methods, etc., can be used. On the other hand, soft data fusion usually
applies on textual information (e.g., from humans’ reports, social networks, Inter-
net, other) which has to be further processed using methods such as Information
retrieval, Natural Language processing, and Semantic knowledge representation.
Moreover, in this unit, Decision level fusion techniques could be applied using
Evidence theory [14–16], Fuzzy Logic [17], 2-tuple Linguistic representation
models [18, 19], and reinforcement learning methods [20, 21].

The Risk-based assessment unit is responsible for the classification of events and
individuals into security classes according to their risk severity level. The unit
exploits behavior and event indicators and their corresponding weights estimated in
the ALMS system, intelligence generated in the Back–end Intelligence component,
and any useful information from the system’s data sources in order to generate
alerts and notifications to the Command-and-Control (C2) center if the risk sever-
ity level exceeds predefined thresholds.

Adaptive learning management system
A security and safety monitoring system has to detect, evaluate, and classify, in

an efficient and timely manner, behaviors and events of interest. To achieve this
critical need, the algorithmic parameters used in the “Analytics, Data Fusion and
Risk-based Security Server” have to be initialized and adaptively adjusted to handle
changes in the monitoring environment. To this end, the use of an Adaptive Learn-
ing Management System (ALMS) which will exploit new and accumulated infor-
mation is essential. An ALMS system can be applied for instance to iteratively adjust
the Risk Assessment classification thresholds and the weights of the behavioral and
event indicators or to recognize correlations between indicators, events, and
behaviors in order to optimize the classification process and improve the efficiency
of the system. An example of such an optimization approach could be the selection
of a reduced number of indicators for event identification.

For the development of automated procedures able to estimate correlations,
optimize selected parameters under certain criteria, and extract reduced dimen-
sional feature vectors for Behavior and event detection the ALMS system demands
efficient methodologies and algorithms. These methodologies and techniques can
cover a wide area of theoretical tools including Machine Learning, Factor Compo-
nent Analysis, Statistical methods, Time series analysis, Optimization theory,
Sparse clustering, Fuzzy Logic, and other [18–21].

As shown in Figures 23 and 26, the ALMS unit receives input from i) the system’s
database which includes data from system’s data sources, outputs of Data Fusion,
Analytics, and Risk assessment unit, and optimization criteria and constraints and ii)
the Security personnel Mobile App which is then used for the training of the applied
algorithms. The ALMS stores its output in the system database, making it accessible
to other units, and creating a continuous feedback loop of information gathering,
learning, and adapting to security threats as they evolve.

The Factor Component Analysis component performs Factor Analysis on fea-
tures/indicators denoting individual characteristics which affect the categorization
of individuals in security-threat levels. Factor analysis is used to reduce the dimen-
sionality of a correlation matrix that contains features/indicators describing a spe-
cific event or behavior. Factor Analysis does that by producing new general
variables, called “factors”, incorporating inside them, the initial features/indicators
according to a condition of high inter-correlation between the newly
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emerged general variables (“factors”) and the initially presented specific variables
[19, 22].

The system needs to analyze the input feed and result to its outcome, taking into
account however, environmental factors regarding system’s efficiency, explicit pol-
icies that should by adopted or exceptions that should be applied, that are related to
specific locations (e.g., restricted areas) or specific human profiles. Such informa-
tion usually is returned to the system in the form of a generic asynchronous quali-
tative feedback (for example insisting user discards of system’s outcomes, or
exception to system’s rules) that should be assimilated in real – time.

The system should be able to receive environmental feedback and adapt its
operation to the current circumstances and requirements. Therefore, we propose a
two-mode adaptation, an offline and an online. The offline adaptation regards a
system initialization, responsible for translating human – understandable require-
ments to algorithms’ parameterization. The online adaptation should track envi-
ronmental feedback for each action of set of actions (policies) produced by the
system and adapt algorithms’ behavior in order to fulfill system’s requirements.

In this case we propose the implementation of reinforcement learning tech-
niques where environmental feedback should be encoded to quantitative measures
of rewards, Figure 27.

Figure 26.
The adaptive learning management system architecture.

Figure 27.
Online ALMS.

25

Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture
DOI: http://dx.doi.org/10.5772/intechopen.96209



3.2.3 Data protection, legal compliance and ethics

Security and safety management systems and their data fusion and intelligent
analytics capabilities require substantial data collection and processing in order to
offer the best possible awareness and decision support to C&C operators, field
personnel and first responders. Especially in the context of homeland security,
privacy and data protection is often seen through the typical trade-off model per-
spective, requesting the public to give up –in the best case knowingly- on particular
rights over the control of their personal data. However, such systems should not be
based and developed on exceptions or operate only in extraordinary circumstances,
the latter being very inefficient. With the latest guidelines of EU General Data
Protection Regulation (GDPR), principles of data minimization and privacy by
design will shift from best practices into a much more regulated form.

The proposed system is in line with these principles, following a “by design
approach” in terms of data protection and ethics. Data collected are structurally
separated from identifiable information, and identification occurs only upon the
logged and explicit intervention of a human operator when truly needed. By
assessing risks on real time, the system itself has the advantage of performing data
minimization through early elimination of lower risk cases. On the front end and
field, privacy enhancing technologies and smart sensors are also preferred and
selected. E.g. smart visual sensors with on-board processing capabilities can filter
out data before sending it over the wire and to the server for processing. Moreover,
the system has been designed to include specific safeguards to protect individuals
against discrimination, stigmatization and unduly prohibition of access to goods
and services. Defined in [23], the system adopts these definitions and extends them
to all protected grounds as defined in the Charter and the Treaty of Amsterdam,
taking also into account the proposal for the horizontal directive that extends the
context of EU non-discrimination law and prohibits discrimination “on grounds of
sex, racial or ethnic origin, age, disability, sexual orientation, religion or belief”. In
this context, Fairness and bias detection algorithms are applied to the adaptive
learning management system while the human operator remains in control of the
final enforcement following any automated decision making process. Intelligent
behavior analytics can further support the case where security risks are based and
calculated on how a person acts on the scene and not any discriminatory
background information.

A subject of past and current research, assessing the societal acceptance of
surveillance and security solutions comes with its own challenges. Acceptance is
based on multiple parameters, individual perceptions and sometimes misconcep-
tions and individual practices which may not be in line with the expressed concerns
[24]. The proposed system and the overall risk-based security paradigm, is based on
the positive fact that the vast majority of people have no malicious intent. The
system focuses on the unknown and high-risk cases, intending to shift the current
practices from annoying horizontal and disruptive processes to seamless and unob-
trusive security. The combination of privacy and ethics by design along with the
ethical and unobtrusive treatment set the parameters for a system with high
acceptance, positive public perception and trust.

4. Conclusions

In this chapter we discussed the concept of risk-based security, the possible
trade-off between increased convenience for passengers from risk-based security
and the delays induced by additional checks needed for establishing each
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passenger’s risk. We also presented a number of technologies, systems and applica-
tions that can be used for assessing risk at an airport or BCP without inducing
additional delay as the discussed approaches estimate risk on-the-fly while passen-
gers either walk around the airport or BCP from entrance to security check points or
BCPs, or queue up in a security line awaiting to go through security checks. All
methods discussed are GDPR and ethics compliant, thus they can be implemented
in accordance to privacy and ethics regulations. Furthermore, the novel system
architecture for Security and Safety monitoring systems introduced in [3] has been
presented. The proposed system aims to identify adverse events or behaviors which
may endanger the safety of people or their well-being having the ability to adapt in
the surveillance environment changes. The dynamic adjustment of the algorithmic
parameters adopted in various units of the system such as intelligence, and Risk
assessment, makes it possible to monitor security threats as they evolve. Thus, the
proposed scheme provides the potential of a high-performance system both in
terms of the detection interval as well as in terms of the performance accuracy
offering the capability of a timely and efficient response to abnormal events and
behaviors.
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