4,126 research outputs found
Straight-line Drawability of a Planar Graph Plus an Edge
We investigate straight-line drawings of topological graphs that consist of a
planar graph plus one edge, also called almost-planar graphs. We present a
characterization of such graphs that admit a straight-line drawing. The
characterization enables a linear-time testing algorithm to determine whether
an almost-planar graph admits a straight-line drawing, and a linear-time
drawing algorithm that constructs such a drawing, if it exists. We also show
that some almost-planar graphs require exponential area for a straight-line
drawing
Hamiltonicity of 3-arc graphs
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple of
vertices such that both and are paths of length two. The
3-arc graph of a graph is defined to have vertices the arcs of such
that two arcs are adjacent if and only if is a 3-arc of
. In this paper we prove that any connected 3-arc graph is Hamiltonian, and
all iterative 3-arc graphs of any connected graph of minimum degree at least
three are Hamiltonian. As a consequence we obtain that if a vertex-transitive
graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of
degree at least three, then it is Hamiltonian. This confirms the well known
conjecture, that all vertex-transitive graphs with finitely many exceptions are
Hamiltonian, for a large family of vertex-transitive graphs. We also prove that
if a graph with at least four vertices is Hamilton-connected, then so are its
iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201
Boxicity and separation dimension
A family of permutations of the vertices of a hypergraph is
called 'pairwise suitable' for if, for every pair of disjoint edges in ,
there exists a permutation in in which all the vertices in one
edge precede those in the other. The cardinality of a smallest such family of
permutations for is called the 'separation dimension' of and is denoted
by . Equivalently, is the smallest natural number so that
the vertices of can be embedded in such that any two
disjoint edges of can be separated by a hyperplane normal to one of the
axes. We show that the separation dimension of a hypergraph is equal to the
'boxicity' of the line graph of . This connection helps us in borrowing
results and techniques from the extensive literature on boxicity to study the
concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to
WG-2014. Some results proved in this paper are also present in
arXiv:1212.6756. arXiv admin note: substantial text overlap with
arXiv:1212.675
Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time
Thomassen characterized some 1-plane embedding as the forbidden configuration
such that a given 1-plane embedding of a graph is drawable in straight-lines if
and only if it does not contain the configuration [C. Thomassen, Rectilinear
drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988].
In this paper, we characterize some 1-plane embedding as the forbidden
configuration such that a given 1-plane embedding of a graph can be re-embedded
into a straight-line drawable 1-plane embedding of the same graph if and only
if it does not contain the configuration. Re-embedding of a 1-plane embedding
preserves the same set of pairs of crossing edges.
We give a linear-time algorithm for finding a straight-line drawable 1-plane
re-embedding or the forbidden configuration.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016). This is an extended
abstract. For a full version of this paper, see Hong S-H, Nagamochi H.:
Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time,
Technical Report TR 2016-002, Department of Applied Mathematics and Physics,
Kyoto University (2016
Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem
We consider arrangements of axis-aligned rectangles in the plane. A geometric
arrangement specifies the coordinates of all rectangles, while a combinatorial
arrangement specifies only the respective intersection type in which each pair
of rectangles intersects. First, we investigate combinatorial contact
arrangements, i.e., arrangements of interior-disjoint rectangles, with a
triangle-free intersection graph. We show that such rectangle arrangements are
in bijection with the 4-orientations of an underlying planar multigraph and
prove that there is a corresponding geometric rectangle contact arrangement.
Moreover, we prove that every triangle-free planar graph is the contact graph
of such an arrangement. Secondly, we introduce the question whether a given
rectangle arrangement has a combinatorially equivalent square arrangement. In
addition to some necessary conditions and counterexamples, we show that
rectangle arrangements pierced by a horizontal line are squarable under certain
sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the
International Symposium on Graph Drawing and Network Visualization (GD) 201
III-V-on-silicon anti-colliding pulse-type mode-locked laser
An anti-colliding pulse-type III–V-on-silicon passively mode-locked laser is presented for the first time based on a III–V-on-silicon distributed Bragg reflector as outcoupling mirror implemented partially underneath the III–V saturable absorber. Passive mode-locking at 4.83 GHz repetition rate generating 3 ps pulses is demonstrated. The generated fundamental RF tone shows a 1.7 kHz 3 dB linewidth. Over 9 mW waveguide coupled output power is demonstrated
- …