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Orientations of infinite graphs with prescribed
edge-connectivity

Carsten Thomassen ∗

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Lyngby, Denmark

December 7, 2015

Abstract

We prove a decomposition result for locally finite graphs which
can be used to extend results on edge-connectivity from finite to in-
finite graphs. It implies that every 4k-edge-connected graph G con-
tains an immersion of some finite 2k-edge-connected Eulerian graph
containing any prescribed vertex set (while planar graphs show that
G need not contain a subdivision of a simple finite graph of large
edge-connectivity). Also, every 8k-edge connected infinite graph has
a k-arc-connected orientation, as conjectured in 1989.

Keywords: infinite graphs, orientations, connectivity
MSC(2010):05C20,05C38,05C40,05C63

1 Introduction.

Many basic statements on finite graphs extend easily to the infinite case
using some variant of the Axiom of Choice such as König’s Infinity Lemma,
Zorn’s Lemma, Rado’s Selection Principle, or compactness. Some of these
are discussed in [18].

∗Research partly supported by ERC Advanced Grant GRACOL
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A striking example of a basic result that does not extend easily is the
result of Nash-Williams, see [14], that the edge set of every graph with no
finite odd cut is the union of pairwise edge-disjoint cycles. In the finite or
countably infinite case this result is trivial because every edge is in a cycle
and the deletion of the edge set of that cycle leaves a graph with no finite odd
cut. However, the general case is surprisingly difficult. If G has no finite odd
cut and edge-connectivity at least 2k (where k is a natural number) and we
make each of the cycles in the decomposition into a directed cycle, then the
resulting digraph has arc-connectivity at least k. Nash-Williams [12] proved
that every finite 2k-edge-connected graph has a k-arc-connected orientation,
and Mader [10] also obtained this result from his general lifting theorem. It
is not known if every infinite 2k-edge-connected graph has a k-arc-connected
orientation. As pointed out in [2], this was stated by Nash-Williams in 1967
[14], but not in [15] and apparently never published. Unaware of this, the
present author conjectured in 1989 [19] the weakened version where the edge-
connectivity 2k is replaced by a function f(k). We prove, among other things,
that weaker conjecture in the present paper.

There are also fundamental results on finite graphs that do not extend
to the infinite case. One such example is the result of Edmonds [6], Nash-
Williams [13] and Tutte [21] that every 2k edge-connected graph has k pair-
wise edge-disjoint spanning trees. In fact, there are graphs of arbitrarily large
edge-connectivity that have no two edge-disjoint spanning trees, as proved
in [1]. The construction in [1] also shows that several other basic results
on finite graphs do not extend to the infinite case. As many edge-disjoint
spanning trees imply high edge-connectivity and also orientations with large
arc-connectivity, one might say that the counterexamples in [1] and the ori-
entation results in the present paper are on the border line of what does not
extend and what does extend to the infinite case.

It is possible to extend infinite graphs to topological spaces so that large
edge-connectivity implies many edge-disjoint spanning (topological) trees, as
discussed in Chapter 8 in [4]. However, orientations of these trees need not
result in large arc-connectivity.

We prove a general decomposition result for a connected, locally finite
graph into a finite number of sets, one of which is a prescribed set A0. The
decomposition has the following property: If a vertex set S in the decompo-
sition has more than one vertex, then the edges in the boundary of the set S
are the first edges in a collection of pairwise edge-disjoint paths in G(S) all
belonging to the same end of G, that is, no two of them can be separated by a
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finite edge-set. As an application, every 4k-edge-connected graph G contains
an immersion of a finite 2k-edge-connected Eulerian graph such that the im-
mersion contains a prescribed vertex set in G (while planar graphs show that
G need not contain a subdivision of a finite graph with no multiple edges and
of large edge-connectivity). We use that to obtain the main application of
the decomposition result, namely that every 8k-edge-connected graph admits
a k-arc-connected orientation. This proves Conjecture 20 in [19].

2 Decomposing an infinite, locally finite, con-

nected graph into finitely many boundary-

linked subgraphs.

The graphs in this paper are allowed to contain loops and multiple edges.
However, each edge-multiplicity is finite. And, an edge is not a loop, unless
explicitly said so. (The graphs in the theorems are loopless. However, loops
may arise in a proof when we identify some vertices.) A graph is locally finite
if every vertex has finite degree. If G is a graph and A is a set of vertices in
G, then G(A) is the subgraph of G induced by A, that is, G(A) has vertex
set A and contains all those edges of G which join two vertices in A. If A is
a set of vertices in G, then the edges with precisely one end in A is called a
cut and is also called the boundary of A and the boundary of G(A).

We say that a vertex set A (and the subgraph G(A)) are boundary-linked
if G(A) together with its boundary has a collection of pairwise edge-disjoint
one-way infinite paths P1, P2, . . . such that each edge in the boundary is the
first edge of one of P1, P2, . . ., and such that the paths P1, P2, . . . belong to
the same end of G(A), that is, for any finite edge set E in G(A), and any two
paths Pi, Pj, G(A)−E has a path joining Pi, Pj. (Another way of saying this
is that G(A) has infinitely many pairwise edge-disjoint paths joining Pi, Pj.
As G is locally finite, these paths can even be chosen to be vertex-disjoint.)

Analogous path systems were investigated by Halin [7].

Theorem 1 Let G be a connected, locally finite graph, and let A0 be a vertex
set with finite boundary. Then V (G) \ A0 can be divided into finitely many
pairwise disjoint vertex sets each of which is either a singleton or a boundary-
linked vertex set with finite boundary.
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Before we prove Theorem 1, we explain the idea behind the proof. We
consider a maximal connected subgraph in G−A0 among those infinite con-
nected subgraphs that have smallest boundary. We contract that subgraph
into a single vertex. We repeat this operation, possibly infinitely many times.
Then we repeat this procedure for maximal infinite subgraphs with second
smallest boundary, and then for maximal infinite subgraphs with third small-
est boundary, etc. When we obtain a finite graph (except that A0 may be
infinite), then the vertices of that graph correspond to the desired vertex
partition of G− A0.

We now turn this argument into a formal proof of Theorem 1. We may
assume that G− A0 is infinite since otherwise, there is nothing to prove.

Let V (G)\A0 = {v1, v2, . . .}. Let e1, e2, . . . , ek be the edges leaving A0. If
k = 1, the result follows by König’s Infinity Lemma. So assume that k ≥ 2.

Every component of G−A0 has boundary of size at most k. At least one
of these components is infinite. Let k′ be the size of a smallest boundary of
an infinite subgraph of G− A0. The proof is by induction on k − k′.

Consider first the case where k − k′ = 0.
By König’s Infinity Lemma, G(A) contains a one-way infinite path P0. We

define the subgrahsH1, H2, . . . as follows: H1 is the unique infinite component
of G−A0 containing infinitely many edges of P0. Having defined Hi we delete
all vertices ofHi incident with the boundary, and we defineHi+1 as the unique
infinite component of the resulting subgraph of Hi containing infinitely many
edges of P0. Then H1, H2, . . . is a decreasing sequence of connected subgraphs
of G each with finite boundary and each containing an infinite subpath of P0.
As k′ = k, the boundary of Hi has at least k edges. By Menger’s theorem, G
has k pairwise edge-disjoint paths Pi,1, Pi,2, . . . , Pi,k such that P (i, j) starts
with ej and terminates with an edge in the boundary of Hi for j = 1, 2, . . . , k
and i = 1, 2, . . .. We choose the paths Pi,1, Pi,2, . . . , Pi,k such that their total
number of edges is minimum.

We now define a limit of these path systems as follows. For infinitely
many i, the paths Pi,1 have the same second edge. For infinitely many of
those i, the paths Pi,2 have the same second edge. Repeating this argument,
the same holds for Pi,3, . . . , Pi,k. For infinitely many of those i, the paths Pi,1
have the same third edge. We repeat this argument and obtain an infinite
path Pj from the paths Pi,j for each j = 1, 2, . . . , k. The paths P1, P2, . . . , Pk
are pairwise edge-disjoint.

We claim that the paths P1, P2, . . . , Pk belong to the same end of G as
P0, that is, each of them is joined by infinitely many pairwise disjoint paths
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(possibly of length zero) to P0. Suppose (reductio ad absurdum) that this
claim is false. Then for at least one of the paths P1, P2, . . . , Pk, say P1,
there is a natural number i such that P1 is disjoint from Hi. Then G − A0

has a connected subgraph M disjoint from Hi and also disjoint from the
vertices incident with the boundary of A0 such that M has finite boundary
and such that M contains an infinite subpath of P1. We now consider the
paths Pj,1, Pj,2, . . . , Pj,k where j > i. Some of these paths may intersect M
and there are infinitely many possibilities for that intersection. However, if
we merely keep track of the sequences of boundary edges of M where the
paths Pj,1, Pj,2, . . . , Pj,k enter and leave M (possibly several times), then the
number of those possibilities is finite because the boundary of M is finite.
This means that there is a fixed natural number m such that, for each j > i,
the paths Pj,1, Pj,2, . . . , Pj,k have at most m edges in M (by the minimality
property of these paths). But then also P1 has at most m edges in M , a
contradiction.

This proves Theorem 1 in the case where k′ = k.
Consider next the case where k′ < k. Then G−A0 has an infinite vertex

set whose boundary has cardinality k′. Let A1 be a maximal such set (which
exists by Zorn’s Lemma). If possible, we choose A1 such that it contains v1.
We contract A1 into a single vertex a1 and call the resulting graph G1.

If G1 − A0 has an infinite vertex set whose boundary has cardinality k′,
then we let A2 be a maximal such set. If possible, we choose A2 such that
it contains v2. We contract A2 into a single vertex a2 and call the resulting
graph G2. Note that A2 does not contain a1 because of the maximality of
A1. We continue like this defining A1, a1, G1, A2, a2, G2, . . .. By the first part
of the proof, each of the graphs G(A1), G(A2), . . . is boundary-linked.

Consider first the case where Gn − A0 is finite, for some n. The sets
A1, A2, . . . , An together with the vertex-singletons not contained in A0∪A1∪
. . .∪An is a partition of V (G) \A0 into boundary-linked subsets and single-
tons.

Consider next the case where each Gn − A0 is infinite. (The sequence
G1, G2, . . . may be finite or infinite.) Let G′ be obtained from G by con-
tracting each An into the vertex an. Then G′ is connected and locally finite.
We claim that we can apply induction to the pair G′, A0. For otherwise,
there would be an infinite connected subgraph H ′ in G′ − A0 whose bound-
ary has at most k′ edges and hence precisely k′ edges because the boundary
of H ′ is also a boundary in G. By the maximality of Am, it follows that
H ′ cannot contain am. And, if H ′ contains vm, then we obtain a contra-
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diction to the way Am is defined. (If possible, Am should contain vm.) So
H ′ cannot exist, and this implies that we can apply induction to the pair
G′, A0. We claim that the partition of G′ −A0 into finitely many boundary-
linked subgraphs (and singletons) also results in a partition of G − A0 into
boundary-linked subgraphs and singletons. To see this, let us consider a
boundary-linked vertex set B in the partition of G′ − A0. Let q denote the
number of edges in the boundary of B, and let P1, P2, . . . , Pq be pairwise
edge-disjoint paths in G′(B) such that no two of these are separated by a
finite edge set in G′(B). Consider a set Ai in G which is contracted into a
single vertex ai in G′ such that at least two of the paths P1, P2, . . . , Pq contain
ai. Let e′1, e

′
2, . . . , e

′
s be their incoming edges, and let e′′1, e

′′
2, . . . , e

′′
s be their

outgoing edges. Let P ′1, P
′
2, . . . , P

′
s, P

′′
1 , P

′′
2 , . . . , P

′′
s be one-way infinite paths

in G(Ai) starting with the edges e′1, e
′
2, . . . , e

′
s, e
′′
1, e
′′
2, . . . , e

′′
s and belonging to

the same end. We shall now find pairwise edge-disjoint paths in G(Ai) joining
e′1, e

′
2, . . . , e

′
s to (a permutation of) e′′1, e

′′
2, . . . , e

′′
s as follows. G(Ai) contains a

path Pα,β which joins some P ′α to some P ′′β and which has no edge in com-
mon with any of P ′1, P

′
2, . . . , P

′
s, P

′′
1 , P

′′
2 , . . . , P

′′
s . We let P ′α,β be a path joining

e′α, e
′′
β contained in the union Pα,β ∪ Pα ∪ Pβ. We continue like this joining

edges in e′1, e
′
2, . . . , e

′
s to edges in e′′1, e

′′
2, . . . , e

′′
s by pairwise disjoint paths in

G(Ai). In this way we determine how the paths P1, P2, . . . , Pq should be con-
tinued when they hit ai. The resulting infinite walks may have repetitions of
vertices (but not edges), and they contain one-way infinite paths, and these
paths belong to the same end.

This completes the proof of Theorem 1.

3 Liftings of finite graphs.

In this section k is a fixed natural number, and all graphs are finite. We
consider a finite Eulerian graph G (that is, G is connected, and all vertices
in G have even degree), a vertex set A in G, and a special vertex x0 not
contained in A. The edges incident with x0 are denoted e1, e2, . . . , e2q. We
assume that any two vertices of A are joined by 2k pairwise edge-disjoint
paths. Equivalently, there is no edge-cut with fewer than 2k edges which
separates two vertices of A. Lifting edges ei, ej means that we first delete
the edges ei, ej and then add instead a new edge joining the two ends of
ei, ej distinct from x0. (If those two ends are identical we do not add the
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corresponding loop, as we do not allow loops in the present paper.) We say
that the lifting is admissible if, in the lifted graph, any two vertices of A are
joined by 2k pairwise edge-disjoint paths. Maders lifting theorem [10], and
also the special case for Eulerian graphs by Lovász [9], implies that some two
edges incident with x0 form an admissible pair. (In the general version of
Mader’s theorem it is assumed that x0 is not a cutvertex. In the Eulerian
case we may allow x0 to be a cutvertex, as e.g. the proof of Theorem 2 below
shows.) The resulting graph also contains an admissible pair, so we can lift
all edges incident with x0 and preserve the connectivity property. We define
the lifting graph L(G,A, x0) as the graph whose vertices are e1, e2, . . . , e2q,
and two vertices ei, ej (possibly part of a multiple edge in G) are neighbors
if e1, e2 is an admissible pair. The bad graph B(G,A, x0) is the complement
of L(G,A, x0). With this notation we have

Theorem 2 B(G,A, x0) is disconnected. Moreover, if B(G,A, x0) has four
vertices, then it either has no edges, or precisely two edges forming a perfect
matching.

In the proof we shall make use of the following which we formulate as a
theorem, although the proof is very short.

Theorem 3 Let G be a finite connected graph. Assume that G is not com-
plete, and G is not a cycle. Then G contains two non-neighbors x, y such
that G− x− y is connected.

Proof of Theorem 3:
Consider a spanning tree T in G. If T has two end-vertices (that is,

vertices of degree 1 in T ) which are non-neighbors in G, then we are done.
So assume that all end-vertices in T induce a complete graph. In particular,
G has no cut-vertex.

We now apply Theorem 2 in [5] which says that every graph which is not
a complete graph or a cycle or a complete regular bipartite graph has a path
which cannot be extended to a cycle.

The assumption of the theorem says that G is not complete, and G is not
a cycle. If G is a complete bipartite graph Kq,q where q ≥ 3, then any two
non-neighbors in G can play the role of x, y. So assume that G is not of the
form Kq,q.

Hence G has a path P between the vertices x, y, say, which cannot be
extended to a cycle. As G has no cut-vertex, P has at least four vertices,
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and hence x, y are non-neighbors. Also G−x−y is connected. For otherwise
P − x − y belongs to a connected component of G − x − y, and x, y have a
neighbor in another component of G−x−y which contradicts the assumption
that P cannot be extended to a cycle.

Proof of Theorem 2:
The proof is by induction on the degree of x0, that is, the number of

vertices of B(G,A, x0).
If B(G,A, x0) has two vertices, then B(G,A, x0) has no edge.
We now consider the case where B(G,A, x0) has four vertices e1, e2, e3, e4.

If x0 has only one neighbor, then B(G,A, x0) has no edge. If x0 has two
neighbors x1, x2, and three of the edges e1, e2, e3, e4 are incident with the
same vertex x1, say, then again, it is easy to see that B(G,A, x0) has no
edge. If x0 has two neighbors x1, x2 each joined to x0 by two edges, then
each of the two edges joining x0, x1 are neighbors in L(G,A, x0) to each of
the two edges joining x0, x2. If x0 has three neighbors x1, x2, x3, and two
of the edges e1, e2, e3, e4, say e1, e2, are incident with the same vertex x1,
say, then it is easy to see that each of e1, e2 is joined to each of e3, e4 in
L(G,A, x0). For, if we consider 2k pairwise edge-disjoint paths joining two
vertices of A before the lifting, then it is easy to transform these paths into
2k pairwise edge-disjoint paths joining the same two vertices of A after the
lifting.

We now consider the case where B(G,A, x0) has four vertices e1, e2, e3, e4,
and these edges have distinct ends in G−x0. Suppose (reductio ad absurdum)
that e1 is joined to each of e2, e3 in B(G,A, x0). When we lift the pair e1, e2 we
create an edge-cut with fewer than 2k edges separating at least two vertices
in A. As G is Eulerian, this cut has at most 2k−2 edges. A similar edge-cut
arises when we lift the pair e1, e3. Thus the vertex set of G can be divided
into four sets A1, A2, A3, A4 such that one of the above cuts consists of the
edges between A1 ∪ A2 and A3 ∪ A4, and the other cut consists of the edges
between A1 ∪ A4 and A2 ∪ A3. We may assume that x0 is in A1 and that e1
is in both of the cuts, that is, e1 has an end in A3. Moreover, both of e2, e3
are in one of the cuts. If we contract each of A2, A3, A4 into a single vertex,
then the liftings of e1, e2 and e1, e3 are still non-admissible in the resulting
graph H. This implies that x0 has four distinct neighbors in H because we
have already disposed of the case where x0 in incident with a multiple edge.
This implies that e1, e2, e3 go to distinct sets A2, A3, A4, and e4 goes to A1.
In particular, all sets A1, A2, A3, A4 intersect A. This implies that there are
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at least 2k edges leaving each of the sets A1, A2, A3, A4, and hence the total
number of edges joining two of the sets A1, A2, A3, A4 is at least 4k. But the
two above edge-cuts contain at most 2k edges each, and e1 is contained in
both of the cuts, so the union of the two cuts has less than 4k edges. This
contradiction disposes of the case where B(G,A, x0) has four vertices.

Assume now that B(G,A, x0) has at least six vertices. Suppose (reductio
ad absurdum) that B(G,A, x0) is connected.

We claim that B(G,A, x0) is not a complete graph. If x0 is not a cutver-
tex, then this follows from Mader’s lifting theorem. If x0 is a cutvertex, then
it is easy to see that any two edges joining x0 to distinct components of G−x0
form an admissible pair. (It is here important that G is Eulerian so that no
edge incident with x0 is a bridge.) This proves that claim that B(G,A, x0)
is not a complete graph.

Consider now the case where B(G,A, x0) is not a cycle. Now we apply
Theorem 3 to B(G,A, x0). Let e1, e2 be edges incident with x0 such that
e1, e2 are non-neighbors in B(G,A, x0) and such that B(G,A, x0) − e1 − e2
is connected. Now we lift e1, e2 in G and call the resulting graph G′. As
B(G′, A, x0) contains B(G,A, x0)−e1−e2 which is connected, this contradicts
the induction hypothesis.

There remains only the case that B(G,A, x0) is a cycle, say e1e2 . . . e2qe1.
If 2q = 6, we lift e1, e3. In the resulting graph the pairs e5, e4 and e5, e6
are non-admissible contradicting the induction hypothesis. If 2q ≥ 8, then
again, we lift e1, e3. If e2, e4 is non-admissible after the lifting, then we obtain
a contradiction to the induction hypothesis. If e2, e4 is admissible after the
lifting, then we also lift this pair, and then we again obtain a connected bad
graph, contradicting the induction hypothesis.

This completes the proof of Theorem 2.

4 Finite immersions with large edge-connectivity.

If G is a graph and H is a graph with vertices x1, x2, . . ., then an immersion
of H in G is a subgraph consisting of vertices y1, y2, . . . in G and a collection
of pairwise edge-disjoint paths in G such that, for each edge xixj in H, there
is a corresponding path in the collection joining yi, yj.

It is well known that there are planar, locally finite graphs Pk with ar-
bitrarily large finite connectivity k and with no multiple edges. A finite
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subgraph of a planar graph with no multiple edges has minimum degree and
hence edge-connectivity at most 5, by Euler’s formula. So, if H ′ is a sub-
division of a finite graph H with no multiple edges, and H ′ is a subgraph
of Pk, then H has edge-connectivity at most 5. This changes if we consider
immersions rather than subdivisions.

Theorem 4 Let k be a natural number, let G be an 4k-edge-connected graph,
and let A0 be a finite vertex set in G.

Then G contains an immersion of a finite Eulerian 2k-edge-connected
graph with vertex set A0.

Proof of Theorem 4 for locally finite graphs:
We apply Theorem 1. Let G′ be the finite graph obtained by contract-

ing each of the boundary-linked sets into a single vertex. Then G′ is 4k-
edge-connected and contains therefore, by the result of Edmonds [6] , Nash-
Williams [13] and Tutte [21] 2k pairwise edge-disjoint spanning trees. The
union of any two edge-disjoint spanning trees contains a spanning Eulerian
subgraph which is connected and hence 2-edge-connected. (To see this, just
delete an appropriate edge-set from one of the trees.) Hence G′ contains a
subgraph G′′ which is the union of k pairwise edge-disjoint spanning Eulerian
subgraphs. We shall modify G′′ into the desired immersion.

First observe that in G′′, no two vertices of A0 are separated by fewer
than 2k edges. Then consider a vertex v in G′′ but not in A0. If v is a
singleton in the decomposition, then we use Mader’s lifting theorem to lift
all edges incident with v such that in the resulting Eulerian graph it is still
true that no two vertices of A0 are separated by fewer than 2k edges.

Next we consider a vertex v in G′′ which in the decomposition corresponds
to a boundary-linked set A. Again, we shall lift the edges incident with v,
but not using Mader’s lifting theorem. Instead we focus on the lifting graph
L(G′′, A0, v) which we know has a disconnected complement, by Theorem 2.
The vertices of this graph L(G′′, A0, v) are the edges e1, e2, . . . , e2q incident
with v. We now define another graph M defined on this vertex set. We
consider the one-way infinite paths P1, P2, . . . , P2q in G(A) starting with the
edges e1, e2, . . . , e2q in the boundary of A, that is, the edges incident with v.
We say that two vertices ei, ej are neighbors in M if G(A) has a collection of
infinitely many pairwise disjoint paths joining Pi, Pj having only the ends in
common with P1 ∪ P2, . . . ∪ P2q. Since any two of P1, P2, . . . , P2q are joined
by infinitely many pairwise disjoint paths in G(A), it follows easily that M
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is connected. As L(G′′, A0, v) has a disconnected complement, by Theorem
2, it follows that L(G′′, A0, v) and M have a common edge joining eα, eβ, say.
Let P ′ be a path in G(A) joining Pα, Pβ with only its ends in common with
P1, P2, . . . , P2q. Let Pα,β be a path in Pα∪Pβ∪Pα,β starting and terminating
with eα, eβ. Now delete the edges of Pα,β from G(A), lift eα, eβ in G′′ and
define a new graph M and a new lifting graph where we now ignore Pα, Pβ
although these two paths Pα, Pβ are still present. The new M and the new
lifting graph have a common edge, and we repeat the above argument to
find a new path in G(A) and lift the corresponding edges in the new G′′.
Doing this for each vertex v in G′′ not in A0 results in an Eulerian 2k-edge-
connected graph with vertex set A0. When we reverse the liftings we modify
this graph to an immersion in G.

We discuss in Sections 7,8 how to extend Theorem 4 to the general case
(allowing vertices to have infinite degree).

5 Orientations of finite graphs with large edge-

connectivity.

In this section we establish an orientation result for finite graphs, to be used
in the main application of Theorem 1. An edge with a direction is called a
directed edge or an arc. A path in which all edges have a direction is called
a mixed path. It is called a directed path if all edges have the same direction
when we traverse the path. A directed cycle is defined analogously. We say
that a directed graph is k-arc-connected if the deletion of any set of fewer
than k arcs results in a strongly connected directed graph. By Menger’s
theorem this is equivalent to the statement: For any two vertices x, y, the
directed graph has k pairwise arc-disjoint directed paths from x to y (and
also from y to x).

Let k be a natural number. The result of Nash-Williams [12] implies that
every finite 2k-edge-connected graph has a k-arc-connected orientation. This
does not follow from the result of Edmonds [6] , Nash-Williams [13] and Tutte
[21] that every finite 2k-edge-connected graph has k pairwise edge-disjoint
spanning trees. But the following weakening does: Every finite 4k-edge-
connected graph has a k-arc-connected orientation. To see this, we consider
a collection of 2k pairwise edge-disjoint spanning trees. We select a vertex v
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in G, we direct half of the trees away from v and the other half towards v.
The main idea in this section is a simple algorithmic proof of this weak-

ening of Nash-Williams’ orientation result. We consider a finite graph G and
we perform alternately the following two operations. (That is, we first per-
form O1, then O2, then O1 on the resulting graph, then O2 on the resulting
graph etc.)

O1: Select a maximal collection of pairwise edge-disjoint cycles such that
no edge has a direction and make each of them into a directed cycle.

O2: Select two vertices u, v joined by the maximum number of edge-
disjoint mixed paths, and identify u, v into one vertex.

It turns out, perhaps surprisingly, that if G is 4k-edge-connected, then
the resulting oriented graph is k-arc-connected. To prove this, we use the
following well-known lemma.

Lemma 1 Let k be a natural number, and let G be a graph with n ≥ 2
vertices and more than (k − 1)(n− 1) edges.

Then G contains two distinct vertices joined by k pairwise edge-disjoint
paths.

Proof of Lemma 1: The proof is by induction on n. For n = 2 there is
nothing to prove (as an edge is not a loop), so we proceed to the induction
step. If G is k-edge-connected, we use Menger’s theorem. So assume the
vertex set of G can be divided into nonempty sets A,B such that there are
at most k − 1 edges between A,B. Then one of G(A), G(B) satisfies the
induction hypothesis.

Theorem 5 Let k be a natural number, and let G be a finite (4k − 2)-edge-
connected graph.

Successively perform either of the following two operations:
O′1: Select a cycle in which no edge has a direction and make it into a

directed cycle.
O′2: Select two vertices u, v joined by 2k − 1 pairwise edge-disjoint mixed

paths, and identify u, v into one vertex.
When none of these operations can be performed the resulting oriented

graph has only one vertex. The edge-orientations of G obtained by O′1 result
in a k-arc-connected directed graph.

Proof of Theorem 5:

12



Suppose we end up with a graph G′ with n′ vertices. Assume (reductio
ad absurdum) that n′ ≥ 2. As we cannot perform operation O′1 on G′, it
follows that G′ has at most n′ − 1 undirected edges. As we cannot perform
operation O′2 on G′, it follows that G′ has at most (2k − 2)(n′ − 1) directed
edges, by Lemma 1. So G′ has at most (2k − 1)(n′ − 1) edges. However, as
G′ is (4k−2)-edge-connected, it has at least (2k−1)n′ edges, a contradiction
which shows that n′ = 1, and hence every edge has received a direction.

We now prove, by induction on the number of vertices of G, that the
orientation of G is k-arc-connected. If operation O′2 is never used, then
each cut is balanced, that is, G is (2k − 1)-arc-connected. So assume that
operation O′2 is used, and let G′ be the graph resulting from the first use
of O′2. When G′ is formed, then some edges received a direction in G, but
those directions can be thought of as directions obtained in G′ as well. By
the induction hypothesis, G′ becomes a k-arc-connected directed graph when
all edges have been given a direction. G is obtained from G′ by splitting a
vertex up into two vertices u, v. Just before the vertex identification u, v are
joined by 2k − 1 pairwise arc-disjoint mixed paths. This implies that there
are k arc-disjoint directed paths from u to v and also k arc-disjoint directed
paths from v to u. (For, if there is a cut separating u from v such that there
are at most k − 1 arcs from one side to the other, then there are also at
most k − 1 arcs in the other direction in the cut, because we have only used
operation O′1 so far. Then the cut has at most 2k − 2 arcs, a contradiction.)
Because of these directed paths between u, v, the k-arc-connectedness of G′

implies k-arc-connectedness of G.

Theorem 6 Let k be a natural number, and let G be a finite (4k − 2)-edge-
connected graph. Let H be an orientation of a subgraph of G such that the
indegree of every vertex of H equals the outdegree. Then the edge-orientation
of H can be extended to an orientation of G which is a k-arc-connected
directed graph.

Proof of Theorem 6: The orientation ofH can be obtained using operation
O′1. Now Theorem 6 follows from Theorem 5.
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6 Orientations of infinite graphs with large

edge-connectivity.

We now turn to the main application of Theorem 1.

Theorem 7 Let k be a natural number, and let G be an 8k-edge-connected
graph.

Then G has a k-arc-connected orientation.

Proof of Theorem 7 for locally finite graphs:
Let e0, e1, . . . be the edges of G. We construct a sequence of finite ori-

ented subgraphs using the operations O′1, O
′
2. After n steps in this sequence

of operations we have a vertex vn (to be explained below) and a directed
Eulerian oriented subgraph Wn containing vn. First, we let W0 be a directed
cycle containing e0, and we let v0 be any vertex in W0. We assume that we
have constructed Wn and explain how to obtain Wn+1. We apply Theorem
4 with 8k instead 4k and with A0 consisting of V (Wn) and the two ends of
en. Let H denote the 4k-edge-connected graph resulting in the application
of Theorem 4. We now apply Theorem 5 to H. (The edges which already
have an orientation form an Eulerian subgraph of H, so their orientations
can be regarded as a result of Operation O′1.) After the operations O′1 and
O′2, H (or, more precisely, the vertex set in G corresponding to the vertex set
of H) becomes a single vertex vn+1 and some loops. Those loops correspond
to edge-disjoint directed paths in G (because H is an immersion rather than
a subgraph), and hence they correspond to directed cycles after H has been
transformed into vn+1. We define the union of those directed cycles to be the
oriented graph Wn+1.

In this way each edge of G gets an orientation. If x, y are vertices of G,
then there exists an n such that x, y are part of the vertex vn. But, this
means that in the subgraph induced by the vertices that form vn, there are k
arc-disjoint directed paths from x to y and k arc-disjoint directed paths from
y to x. As this holds for any x, y in G, the orientation of G is k-arc-connected.

We discuss in Sections 7,8 how to extend Theorem 7 to the general case.
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7 From locally finite to countably infinite.

Let G be a graph, and let A be a vertex set in G. Then an A-pairing is a
collection of pairwise edge-disjoint paths in G joining vertices in A such that
each vertex in A is the end-vertex of precisely one such path. An A-near-
pairing is a collection of pairwise edge-disjoint paths in G joining vertices in
A such that each vertex in A, except one, is the end of precisely one such
path.

Theorem 8 Let T be a tree, and let A be a vertex set in T . Then T has an
A-pairing or an A-near-pairing.

Proof of Theorem 8: If A is finite, the statement is an easy exercise. We
consider the case where A is a countable set with vertices v1, v2, . . . (This is
merely for notational convenience. If A is uncountable we consider a well-
ordering instead.) If possible, we consider a path P1 joining two vertices vi, vj
in A such that T − E(P1) has only one component T1 containing vertices of
A \ {vi, vj}. We consider that tree T1 instead of T and we replace A by
A1 = A \ {vi, vj}. If possible, we consider a path P2 joining two vertices
vp, vq in A1 such that T1 − E(P2) has only one component T2 containing
vertices of A1 \ {vp, vq}. We proceed like this pairing vertices of A. Since
these pairings are inductively ordered by inclusion, we use Zorn’s lemma
to find a maximal such pairing. (To see that the pairings are inductively
ordered, we consider a chain of pairings. If vi, vj are vertices of A which are
not part of these pairings, then the path in T between vi, vj consists of edges
none of which are part of any of the pairings in the chain and hence also not
in the union of the pairings.)

After we have used Zorn’s lemma we have a tree containing the non-paired
vertices A′ in A. The maximality property of the paired vertices implies that
T ′, A′ has the following property which we call property p: it is not possible
to find a path P ′ in T ′ joining two vertices vi, vj in A′ such that T ′ − E(P ′)
has only one component containing vertices of A′ \ {vi, vj}. If A′ consists of
one vertex we have obtained an A-near-pairing. So assume that A′ has at
least two vertices. Then A′ has infinitely many vertices by the maximality
property and the argument at the beginning of the proof. We claim that in
this case T ′ has an A′-pairing. Let i be the smallest number such that vi is in
A′, that is, vi is not paired. Let P be a path in T ′ from vi to another vertex
a of A′ such that no intermediate vertex of P is in A′ and such that as few
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components of T ′ −E(P ) as possible contain precisely one vertex of A′. We
add P to the pairing and delete the edges of P from T ′.

We claim that no component of T ′−E(P ) contains precisely one vertex b
of A′. For, if there were such a component, then we would replace P by the
path P ′ from vi to b. That path does not contain a because of the maximality
of the pairing. We might thereby create a new component with precisely one
vertex of A′. That vertex must be the other end a of P . But then the path
between a and b has the property that the deletion of its edges creates a forest
with only one component containing vertices of A′ \ {a, b}, a contradiction
to the maximality of the pairing.

Since no component of T ′ − E(P ) contains precisely one vertex of A′, it
follows that every component of T ′−E(P ) contains either none or infinitely
many vertices of A′. (For, if it contains a finite number ≥ 2 of vertices
in A′, then we can pair all these vertices except possibly one well-chosen
vertex, and add that finite pairing to our maximal pairing and thereby obtain
a contradiction to the maximality.) Consider one, say T ′′, which contains
infinitely many vertices of A′. If T ′′, A′′ has property p, then we repeat
the argument we applied to T ′, A′. So assume that T ′′, A′′ does not have
property p. We now let P ′1 be a path joining two vertices vp, vq in A′′ such
that T ′′−E(P ′1) has only one component containing vertices of A′′ \ {vp, vq}.
We repeat this until we either obtain a pairing of A′′ or obtain T ′′′, A′′′ having
property p, in which case we repeat the argument we applied to T ′, A′.

We now argue that we indeed reach one of those two possibilities. (Note
that we need an argument since we are not satisfied with a near-pairing.)
Let us therefore assume that the pairing procedure of A′′ results in a partial
pairing which does not include the vertex x in A′′, say. Let P ′ be the path
in T ′′ from x to the path P (from vi to a). As T ′, A′ has property p, it
follows that P ′1 contains an edge of P ′. The same applies to P ′2, P

′
3, . . ., so

this sequence must be finite. So after having deleted the edges of the paths
in that sequence, we get a tree with property p.

Repeating this argument completes the proof.

A splitting of a graph G is a graph G′ which is obtained from G by blowing
each vertex up into a set of vertices. Formally, a splitting G′ of G is a graph
with the same edges as G. Each vertex v in G corresponds to a vertex set
Vv in G′ such that G′ has no edge joining two vertices in Vv and such that
the identification of all vertices of Vv into a single vertex (for each vertex v
in G) results in G.
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Theorem 9 Let k be a natural number, and let G be a countably infinite
k-edge-connected graph. Then G has a splitting such that the resulting graph
is k-edge-connected, and each block of the resulting graph is locally finite.

Proof of Theorem 9: Let B be a block of G and let v be a vertex in B of
infinite degree in B. Let A = {v1, v2, . . .} be the set of neighbors of v in B.
Let T be a spanning tree of B−v. Consider an A-pairing or an A-near-pairing
in T . Assume that the pairing is an A-pairing, and the notation is chosen such
that v2i−1, v2i are paired by the path Pi for i = 1, 2, . . .. Let H be a locally
finite k-edge connected graph with countably infinite edge set e1, e2, . . . and
countably infinite vertex set u1, u2, . . .. For notational convenience we give
each path Pi a direction, and we give each edge ei a direction. Note that
we have a one-to-one correspondence between the edges in H and the paths
Pi in the pairing. We split v up into vertices w1, w2, . . . as follows: In order
to decide which neighbors wi should have, we consider the vertex ui in H.
We let wi be joined to the first vertices of those paths in the pairing which
correspond to the edges leaving ui in H and also to the last vertices of those
paths in the pairing which correspond to the edges entering ui in H. We also
let w1 be joined to the unpaired vertex v1 in case we have an A-near-pairing.
As H is k-edge connected, it follows that the resulting graph has k pairwise
edge-disjoint paths between any two of the new vertices w1, w2, . . .. Hence the
resulting graph obtained by splitting v into new vertices is k-edge-connected.
If v is a vertex of other blocks in G, then we let w1 be part of those blocks.

We have now shown how to split one vertex of infinite degree such that
the edge-connectivity is preserved. But, we have to dispose of all such ver-
tices. To do this we enumerate all pairs of vertices of finite degree in G, say
L1, L2, . . .. (When we split a vertex of infinite degree we obtain new vertices
of finite degree. The pairs containing those new vertices will be inserted in the
sequence L1, L2, . . .. The sequence L1, L2, . . . is now renamed L1,1, L2,1, . . .
and the new sequence is called L1,2, L2,2, . . .. We then enumerate the pairs
Li,j as we enumerate the rational numbers. ) Before we split the vertex v, we
select k pairwise edge-disjoint paths between the two vertices of L1. When
we split v, we insist that the k paths between the two vertices of L1 are
preserved as paths. If they are destroyed after the splitting, we restore them
by a finite number of vertex identifications. We still have a splitting of v into
vertices of finite degree. Then we select k pairwise edge-disjoint paths joining
the two vertices of L2. When we split the next vertex of infinite degree, we
insist that the k paths between the two vertices of L1 are preserved as paths

17



and also the k paths between the two vertices of L2 are preserved as paths.
Continuing like this results in the desired vertex splitting of G.

Using Theorem 9, we can now extend Theorems 4, 7 to the countable
case. A graph is k-edge-connected if and only if every block is k-edge-
connected. A directed graph is k-arc-connected if and only if every block
is k-arc-connected. As vertex-identifications preserve edge-connectivity and
arc-connectivity, Theorem 9 immediately extends Theorem 7 to the countable
case.

Theorem 4 also extend easily to the countable case. In this theorem there
are some prescribed vertices involved. If such a vertex u has infinite degree,
then u is split up into vertices of finite degree. We just select one of them
and let that vertex play the role of a new u. Each block is locally finite,
but cutvertices may have infinite degree. However, if we wish to include two
vertices x, y in an immersion, and x, y are separated by a cutvertex z, then
we just add z to the vertex set of the immersion (and later we lift its edges
because we want the vertex set of the immersed graph to be precisely A0).
So, the countable version of the result in Theorem 4 reduces to the locally
finite case.

8 From countable to uncountable.

We now extend Theorems 4, 7 to the uncountable case.

Theorem 10 Let k be a natural number, and let G be an infinite k-edge-
connected graph, and let A0 be a finite vertex set of G. Then G contains a
countable subgraph which contains A0 and which is k-edge-connected.

Proof of Theorem 10: Let G1 be obtained from A0 by adding k pairwise
edge-disjoint paths between any two pairs of vertices of A0. Suppose we have
constructed the finite graph Gn. Let Gn+1 be obtained from Gn by adding k
pairwise edge-disjoint paths between any two pairs of vertices of Gn. Then
the union of the graphs G1, G2, . . . is countable and k-edge-connected.

Theorem 10 reduces immediately Theorem 4 to the countable case. To
extend Theorem 7 to the uncountable case, let us consider any 8k-edge-
connected graph G. By Theorem 10, G has a finite or countably infinite
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8k-edge-connected subgraph G′ with at least two vertices. By the count-
able version of Theorem 7, G′ has a k-arc-connected orientation. By Zorn’s
Lemma, G has a maximal oriented k-arc-connected subgraph containing G′.
(When we apply Zorn’s lemma, we consider subgraphs that are actually ori-
ented. Not just some that have a k-arc-connected orientation.) Clearly, G′′

is an induced subgraph. We claim that G′′ = G. For if this were not the case,
then we contract G′′ into a single vertex v0. By Theorem 10, the resulting
graph H contains a finite or countably infinite subgraph G′′′ which is 8k-edge-
connected and which contains v0 and has at least one more vertex. By the
countable version of Theorem 7, G′′′ has a k-arc-connected orientation. The
edges in G′′ ∪ G′′′ (which have an orientation) now form a k-arc-connected
directed subgraph of G contradicting the maximality of G′′.

There is another way of extending Theorem 7 from the countable case to
the uncountable case by using the result of Laviolette [8] that every infinite k-
edge-connected graph is the union of pairwise edge-disjoint k-edge-connected
countable subgraphs.

9 Open problems: Connectivity and (2 + ε)-

flow.

We repeat the original question of Nash-Williams [14].

Problem 1 Let k be a natural number. Does every 2k-edge-connected graph
admit a k-arc-connected orientation?

Problem 2 Let ε be a positive real number. Does there exist a natural num-
ber f(ε) such that every f(ε)-edge-connected graph admits an orientation and
a flow with flow values in the interval between 1 and 1+ ε such that every cut
is balanced, that is, the sum of flow values in one direction of the cut equals
the sum of flow values in the other direction?

For finite graphs this problem became known as the (2+ε)-flow conjecture
by Goddyn and Seymour. For finite graphs it is now a theorem as it follows
from the weak circular flow conjecture proved in [19].

Problem 3 Let ε be a positive real number. Does there exist a natural num-
ber f(ε) such that every f(ε)-edge-connected graph admits an orientation such
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that, for each cut, the number of edges directed in one direction is at least
1− ε times the number of edges directed in the other direction?

An affirmative answer to Problem 2 implies an affirmative answer to Prob-
lem 3 which is also a theorem in the finite case. Prior to the proof in [19] it
was known that Problems 2, 3 were equivalent for finite graphs.

Problems 2, 3 have affirmative answers if we focus only on finite cuts. It is
the infinite cuts that are problematic. As a first step towards an investigation
of infinite cuts we now characterize the graphs which admit an orientation
such that each infinite cut has infinitely many edges in both directions.

10 Robbins’ theorem extended to infinite cuts.

Robbins [16] proved that every finite 2-edge-connected graph has a strongly
connected orientation. It is easy to extend this to infinite graphs using Zorn’s
lemma. It is also easy to prove that, for each finite vertex set A in an 2-
edge-connected graph G, there is a strongly connected orientation of a finite
subgraph containing A.

Theorem 11 Let G be an infinite 2-edge-connected graph. Then G has a
strongly connected orientation such that every infinite cut has infinitely many
edges in both directions.

Proof of Theorem 11: We consider first the locally finite case. Let
e1, e2, . . . be the edges of G. Let G0 be a single vertex of G. Suppose we
have defined a finite subgraph Gn and given each edge of Gn an orientation
such that Gn is strongly connected. Then G− V (Gn) has only finitely many
components, and each component contains only finitely many bridges and
only finitely many maximal 2-edge-connected subgraphs. Consider a max-
imal 2-edge-connected subgraph H of G − V (Gn). By a remark above, H
has a finite subgraph H ′ which contains those vertices of H having neigh-
bors outside H such that H ′ has a strongly connected orientation. We also
give the bridges of G − V (Gn) and all edges between Gn and G − V (Gn)
an orientation such that the edges with an orientation form a finite strongly
connected subgraph Gn+1. We may assume that Gn+1 contains en+1. Then
the union of G1, G2, . . . is a strongly connected orientation of G.

We claim that all infinite cuts are balanced. To prove this consider an
edge e. Let n be the smallest number such that e is in Gn. We select a
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directed cycle Ce in Gn containing e. We say that each edge in Ce − e is
demanded by e. For each edge e in a maximal 2-edge-connected subgraph
H of G − V (Gn) it is possible to choose Ce such that it is contained in H.
This means that every edge is demanded by only a finite number of edges.
Consider now an infinite cut consisting of the edges between A,B, say. As
G is strongly connected, there is at least one edge from A to B and at least
one edge from B to A. Every edge from A to B demands an edge from B to
A. As each edge in the cut is demanded by only finitely many edges, there
are infinitely many edges from B to A and, similarly, infinitely many edges
from A to B.

Using Theorem 9 the argument extends to the countable case. Extending
to the uncountable case is routine but a little tedious so we leave it for the
reader.

For each property p1, p2, p3 below we can now characterize the connected
graphs with that property.

p1: G has an orientation with no infinite directed cut (that is, a cut in
which all arcs have the same direction).

p2: G has an orientation in which each infinite cut has infinitely many
edges in either direction.

p3: G has an orientation in which each infinite cut is balanced, that is,
the cardinality of arcs in one direction equals the cardinality of arcs in the
other direction.

It turns out that the properties p1, p2, p3 are equivalent. To see this,
consider a connected graph G. Let T be the tree obtained by contracting
each maximal 2-edge-connected subgraph into a single vertex. If T has a
vertex of infinite degree or infinitely many vertices of degree at least 3, then
it is easy to see that every orientation of G results in a graph where there is
an infinite directed cut. In other words, G does not satisfy any of p1, p2, p3
in this case.

Conversely, if T is locally finite and has only finitely many vertices of de-
gree at least 3, then we can make every path in T with intermediate vertices
of degree 2 into a directed path, and we can apply Theorem 11 to each max-
imal 2-edge-connected subgraph. In the resulting orientation each infinite
cut has infinitely many arcs in either direction of the cut. If some maxi-
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mal 2-edge-connected subgraph H is uncountable, then we use the result of
Laviolette [8] to first decompose H into countable 2-edge-connected graphs
and then we apply Theorem 11 to each of those. It is easy to see that every
infinite cut of G is balanced, that is, G satisfies each of p1, p2, p3.

Acknowledgement Thanks are due to a referee for having detected an
error the the original version of Theorem 1 which lead to the present version.
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