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Abstract

Robertson ([5]) and independently, Bondy ([1]) proved that the
generalized Petersen graph P (n, 2) is non-hamiltonian if n ≡ 5 (mod
6), while Thomason [7] proved that it has precisely 3 hamiltonian
cycles if n ≡ 3 (mod 6). The hamiltonian cycles in the remaining
generalized Petersen graphs were enumerated by Schwenk [6]. In this
note we give a short unified proof of these results using Grinberg’s
theorem.

A celebrated result of Grinberg (see [4]) concerning planar hamiltonian
graphs states that if a planar graph G has a hamiltonian cycle C which
partitions its fi faces of degree i into f

′

i (respectively f
′′

i ) faces of degree i

in the interior (respectively exterior) of C, then

∑

i≥3

(i − 2)(f
′

i − f
′′

i ) = 0.

If there is precisely one natural number i not congruent to 2(mod 3)
such that fi > 0, then Grinberg’s equation cannot be satisfied, and hence
the graph is non-hamiltonian. But even if the equation can be satisfied, it
is still possible, in special cases, to use the criterion to prove that a graph
is non-hamiltonian. Thus Thomassen [8] used the criterion to describe an
infinite class of cubic planar hypohamiltonian graphs (all of which have a
face partition that satisfies Grinberg’s equation), and also the Tutte graph
can be shown to be non-hamiltonian using the Grinberg criterion, see for
example, [2] p.166 and [3] Chapter 6. In this note we apply the criterion
to a class of non-hamiltonian graphs, namely some generalized Petersen
graphs.
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Suppose n and k are two integers such that 1 ≤ k ≤ n − 1 and n ≥ 5.
The generalized Petersen graph P (n, k) is defined to have vertex-set {ui, vi :
i = 0, 1, . . . , n − 1} and edge-set {uiui+1, uivi, vivi+k : i = 0, 1, . . . , n − 1
with subscripts reduced modulo n}.

Let Fm denote the m-th Fibonacci number defined by F1 = F2 = 1,
and Fm = Fm−1 + Fm−2 for m > 2. It is easy to prove, by induction on n,
that the number of matchings (including the empty matching) of the path
with n vertices is Fn+1. Hence the number of matchings of the cycle with
n vertices is Fn+1 + Fn−1.

Theorem 1 Let n be a natural number, n ≥ 5. Then
(i) ([1], [5]) P (n, 2) is non-hamiltonian if n ≡ 5 (mod 6),
(ii) ([7]) P (n, 2) has precisely three hamiltonian cycles if n ≡ 3 (mod

6), and
(iii) ([6]) the number of hamiltonian cycles in P (n, 2) is























n if n ≡ 1 (mod 6)

2(Fn

2
+1 + Fn

2
−1 − 1) if n ≡ 0, 2 (mod 6)

n + 2(Fn

2
+1 + Fn

2
−1 − 1) if n ≡ 4 (mod 6)

Proof: Assume first that n ≡ 3, 5 (mod 6) and n ≥ 5.

If the two edges u0u1 and v0v2 are deleted from P (n, 2), the result
is a planar graph whose face-degree sequence is (5, . . . , 5, n+5

2
, n+7

2
) (see

Figure 1) and hence is non-hamiltonian by Grinberg’s criterion because
when n ≡ 3 (mod 6), n+5

2
and n+7

2
are 1, 2 (mod 3) respectively while

when n ≡ 5 (mod 6), n+5

2
and n+7

2
are 2, 0 (mod 3) respectively.

This means that

(∗) if P (n, 2) has a hamiltonian cycle C, then C must contain at least
one of the edges u0u1, v0v2.

Assume now that C is a hamiltonian cycle of P (n, 2). Since C cannot
contain all the edges of the inner cycle v0v2v4 · · · vn−2v0, we may assume
that v0v2 is not an edge in C. But then this implies that the paths vn−2v0u0

and u2v2v4 must be part of C.

Since v0v2 is not an edge in C, the observation (∗) implies that u0u1 is
an edge in C. By symmetry, u1u2 is also an edge in C. This follows because
there is an automorphism (the reflection fixing u1, v1) of P (n, 2) which inter-
changes between the edges u1u0, u2u1 and keeps v0v2 fixed. (“Reflection”
here refers to the standard drawing of P (n, k) where the vertices u0, u1, . . .

and also the vertices v0, v1, . . . form convex n-gons.) Hence C contains the
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Figure 1: P (n, 2) with u0u1 and v0v2 deleted, n ≡ 3, 5 (mod 6)

path vn−2v0u0u1u2v2v4. So C also contains the path vn−1v1v3u3u4 and
therefore C does not contain the edge v3v5. Summarizing, we have proved
that if a hamiltonian cycle C does not contain the edge v0v2, then C does
not contain the edge v3v5 either. By repeating this argument with v3v5

instead of v0v2, we conclude that C does not contain the edge v6v8 either.
In fact C does not contain any of the edges v0v2, v3v5, v6v8, v9v11, . . . .
Since C must contain some edge of the inner cycle v0v2v4 · · · vn−2v0, we
conclude that n ≡ 0 (mod 3). Hence P (n, 2) has no hamiltonian cycle if
n ≡ 5 (mod 6). In the case that n ≡ 3 (mod 6), the argument eventually
leads to a unique hamiltonian cycle which can be rotated to yield precisely
three hamiltonian cycles.

Assume next that n ≡ 1 ( mod 6). Then Grinberg’s equation is satisfied
but only if the two faces of degrees n+5

2
and n+7

2
are both in the interior (or

exterior) of the hamiltonian cycle on the resulting graph of Fig. 1. This is
possible only if the edge v1vn−1 is not contained in the hamiltonian cycle.
Assume that C′ is such a hamiltonian cycle. Then it is easy to see (from Fig.
1) that the paths vn−3vn−1un−1u0v0vn−2un−2un−3 and v4v2u2u1v1v3u3u4

must be part of C′. There is a unique hamiltonian cycle containing these
paths which can be rotated to yield n hamiltonian cycles. If it is not possible
to obtain a hamiltonian cycle by deleting a pair uiui+1, vivi+2, then we get
a contradiction as in the case when n ≡ 5 (mod 6).

When n ≥ 6 is even, P (n, 2) is a planar graph. Again, the above
method can be applied. Note that (∗) cannot be satisfied for each pair
uiui+1, vivi+2 and also for each pair uiui−1, vivi−2 because the argument
in the case n ≡ 3, 5 (mod 6) would lead to a 2-factor consisting of two
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cycles rather than a hamiltonian cycle. So there exists some pair of edges
uiui+1, vivi+2 (or some pair uiui−1, vivi−2), say u0u1, v0v2, which is avoided
by some hamiltonian cycle.

Draw P (n, 2) in the plane such that the n
2
-cycle v1v3 . . . vn−1v1 is the

outer face boundary. In this case, the face-degree sequence of the resulting
graph (after deleting the edges u0u1 and v0v2) is (5, . . . , 5, n

2
, n

2
+ 6) and

Grinberg’s equation is satisfied. For this to be possible, any hamiltonian
cycle must contain the edge v1vn−1 (which is common to both the n

2
-face

and the (n
2

+ 6)-face) unless n ≡ 4 (mod 6).

Assume first that n ≡ 0, 2 (mod 6). Then for any even integer 0 ≤
i ≤ n

2
, whenever the pair of edges vivi+2, uiui+1 is deleted, then the paths

ui−1uivivi−2, vi−1vi+1ui+1ui+2vi+2vi+4 and ui+4ui+3vi+3vi+5 must be part
of the hamiltonian cycle. We now follow the hamiltonian cycle along the
path vi+2vi+4 . . .. If we never use an edge vjuj there is a unique way to
continue the hamiltonian cycle. On the other hand, the first time we use an
edge vjuj we repeat the previous configuration with j instead of i. Those
edges of the cycle v0v2 . . . v0 which are not in the hamiltonian cycle clearly
form a matching. On the other hand, whenever we specify a matching on
this cycle, there is a unique hamiltonian cycle which avoids this matching
and also avoids edges of the form uiui+1, vivi+2. Therefore the number
of hamiltonian cycles in P (n, 2) avoiding some pairs of edges of the form
uiui+1, vivi+2 is Fn

2
+1+Fn

2
−1−1. Note that for any such hamiltonian cycle,

(∗) fails for the pairs uiui+1, vivi+2 but holds for the pairs uiui−1, vivi−2.

By symmetry (more precisely, by taking the cycle u1u2...unu1 in its
reverse order) the number of hamiltonian cycles in P (n, 2) avoiding pairs
of edges of the form uiui−1, vivi−2 is also Fn

2
+1 +Fn

2
−1−1. Thus the total

number of hamiltonian cycles in P (n, 2) is 2(Fn

2
+1 + Fn

2
−1 − 1) in the case

n ≡ 0, 2 (mod 6).

The reason that we have counted all hamiltonian cycles is that (∗) fails
either for the pairs uiui+1, vivi+2 or for the pairs uiui−1, vivi−2, as noted
above.

For n ≡ 4 (mod 6), there are two types of hamiltonian cycles, namely
the 2(Fn

2
+1 +Fn

2
−1−1) hamiltonian cycles which we have already counted,

and also the unique hamiltonian cycle that avoids u0u1, v0v2, v1vn−1, and
those which can be obtained from this hamiltonian cycle by rotation and
reflection. There are n hamiltonian cycles of the latter type. This completes
the proof. �
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