8,355 research outputs found

    Can shared surfaces be safely negotiated by blind and partially sighted people?

    Get PDF
    ‘Shared Space’ schemes are designed to remove the physical distinction between pedestrian space and traffic space in the street environment to encourage more pedestrians to use the area. They may also make it easier for people with wheelchairs, prams or similar to negotiate the space. However, by removing the kerbs, blind and partially sighted people lose one of the key references that they normally use to know they are in a safe space away from vehicles and to navigate around the area. This study is intended to understand what people with visual impairments need from a surface to make it clearly detectable, given that it should not be a barrier to progress for people with other mobility limitations. With this information, some surfaces were tested to determine their suitability as a delineator. Approach and/or Methodology An experimental approach was adopted. People with mobility impairments and blind and partially sighted people were recruited. All participants used the normal street environment unaccompanied. The blind and partially sighted participants included people who use a guide dog, those who use a long cane and those who use no assistive device. The people with mobility impairments all used some form of mobility aid for example walking stick or wheelchair. The tests were run in the pedestrian testing facility PAMELA at UCL. The top surface of the test facility was predominantly concrete paving slab, but with test surfaces discretely located. The task for all participants was to travel from one designated place in the test area to another. For some of these trials the participant would encounter one of the test surfaces, but on other trials they would not. After each trial the participants were asked to rate how easy it was to detect a change in surface, or how easy it was to pass over the surface. The different surfaces included blister paving, corduroy paving, a central delineator, slopes, roughened surfaces, and traditional kerb upstands of different heights. Results or Expected Results None of the 400mm wide surfaces was detected by all participants. Changes in level through slopes were considered both positively and negatively, some people asking for steeper gradients and some less steep. Kerb heights below 60mm were not reliably detectable by blind or partially sighted people and are an obstacle to people in wheelchairs. Further tests on more surfaces are in process and the results will be incorporated into this paper. Conclusion Early suggestions for detectable surfaces – proposed in UK schemes - have been either a barrier to people with mobility impairments, or difficult to detect for blind and partially sighted people or both. The work presented in this paper shows the difficulty in finding a suitable dual purpose surface, yet clarifies the design requirements for shared space delineators for people with mobility impairments and blind or partially sighted people. This work has reinforced the point that 400mm width is insufficient to be used as a tactile surface. Further conclusions will be made after the additional surface tests. Topic Code: Ca C. Accessibility concerns and solutions for those with cognitive and sensory impairment a. Pedestrian safety at crossings and intersection

    Meson and Baryon dispersion relations with Brillouin fermions

    Get PDF
    We study the dispersion relations of mesons and baryons built from Brillouin quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cut-off effects. As an application we determine the masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches published versio

    Ontogenetic changes in size and shape of statoliths: implications for age and growth of the short-lived tropical squid Sepioteuthis lessoniana. (Cephalopoda: Loliginidae)

    Get PDF
    This study examined the relation between statolith and somatic growth in the tropical squid Sepioteuthis lessoniana. Five separate linear dimensions were measured on the statoliths of 103 individuals (17–245 mm mantle length). In addition the statoliths of 80 adults (82–245 mm mantle length) were weighed. Statolith increment analysis provided age estimates for 78 individuals. Statolith total length was correlated with age for squid less than ~60 days of age, although neither statolith total length nor weight was a useful predictor of age in older squid. Combining the five statolith dimensions to produce a description of statolith shape provided only slightly better estimates of age than statolith total length or weight alone. Statolith shape changed during ontogeny, developing from relatively elongate juvenile statoliths into the adult form with more robust dorsal and lateral domes. This development was reflected in wider spacing and superior optical definition of daily growth increments in the dorsal and lateral domes of adult statoliths, in relation to the slower growing rostrum. Growth of S. lessoniana statoliths does not appear to be strongly linked to mantle growth; both statolith total length and weight increase more slowly than mantle length

    Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations

    Full text link
    Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by the analysis of the field lines traced from positions of four conspicuous flare 1700 A footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of magnetic twist index. Especially, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the flare, the twist index of regions around the footpoints greatly diminish and the above field lines become low lying and less twisted (~0.6 turns), overarched by loops linking the later formed two flare ribbons. About 10% of the flux (~3x10^19 Mx) from the inner footpoints has undergone a footpoint exchange. This portion of flux originates from the edge regions of the inner footpoints that are brightened first. These rapid changes of magnetic field connectivity inferred from the NLFFF extrapolation are consistent with the tether-cutting magnetic reconnection model.Comment: 6 pages, 5 figures, accepted to the Astrophysical Journal Letter

    Rapid Changes of Photospheric Magnetic Field after Tether-Cutting Reconnection and Magnetic Implosion

    Full text link
    The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. High-resolution magnetograms of Hinode that are available at ~-5.5, -1.5, 1.5, and 4 hrs relative to the flare maximum are used to reconstruct three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase by 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of the sigmoid according to the NLFFF model. The NLFFF model further shows that strong coronal currents are concentrated immediately above the region, and that more intriguingly, the coronal current system underwent an apparent downward collapse after the sigmoid eruption. These results are discussed in favor of both the tether-cutting reconnection producing the flare and the ensuing implosion of the coronal field resulting from the energy release.Comment: 7 pages, 5 figures, accepted to the Astrophysical Journal Letter

    A Circular-ribbon Solar Flare Following an Asymmetric Filament Eruption

    Full text link
    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.Comment: 7 pages, 5 figures, accepted to ApJ Letter

    Three-dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283

    Get PDF
    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response, of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km/s after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km/s after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward, and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.Comment: 12 pages, 9 figures, accepted to the Astrophysical Journa
    • …
    corecore