35 research outputs found

    Introduction to Complex Systems, Sustainability and Innovation

    Get PDF
    The technological innovations have always proved the impossible possible. Humans have all the time obliterated barriers and set records with astounding regularity. However, there are issues springing up in terms of complexity and sustainability in this context, which we were ignoring for long. Today, in every walk of life, we encounter complex systems, whether it is the Internet, communication systems, electrical power grids, or the financial markets. Due to its unpredictable behavior, any creative change in a complex system poses a threat of systemic risks. This is because an innovation is always introducing something new, introducing a change, possibly to solve an existing problem, the effect of which is nonlinear. Failure to predict the future states of the system due to the nonlinear nature makes any system unsustainable. This necessitates the need for any development to be sustainable by meeting the needs of people today without destroying the potential of future generations to meet their needs. This chapter, which studies systems that are complex due to intricateness in their connectivity, gives insights into their ways of emergence and the nonlinear cause and effects pattern the complex systems use to follow, effectively paving way for sustainable innovation

    Effect of Mechanical Stimuli on the Sensitivity of Mimosa Pudica Plant

    Get PDF
    'Touch me not' plant is o herb that shows sensation on touch, which is taxonomically called as Mimosa pudica. The fern like leaves close up and droop when touched; usually re-open within few minutes as a response to stimuli. Mimosa pudica reacts to mechanical stimuli with help of mechanosensitive channels. They are ideal transducers of physiologically relevant mechanical forces. The present study focus on the effect of mechanical stimuli in terms of various touch viz., human, plastic, cotton, fiber and wood on the sensitivity of Mimosa pudico plant whose leaves are at tender stage. Time taken for the leaflets to close and reopen was noted for each of the above mentioned stimuli. The t-test has shown the significant result for various mechanical stimuli. The rote of sensitivity was very high in Mimosa pudica as result of plastic touch

    Topological structure and dynamics of three-dimensional active nematics.

    Get PDF
    Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms

    Concurrent MEK2 Mutation and BRAF Amplification Confer Resistance to BRAF and MEK Inhibitors in Melanoma

    Get PDF
    SummaryAlthough BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. We report a de novo MEK2-Q60P mutation and BRAF gain in a melanoma from a patient who progressed on the MEK inhibitor trametinib and did not respond to the BRAF inhibitor dabrafenib. We also identified the same MEK2-Q60P mutation along with BRAF amplification in a xenograft tumor derived from a second melanoma patient resistant to the combination of dabrafenib and trametinib. Melanoma cells chronically exposed to trametinib acquired concurrent MEK2-Q60P mutation and BRAF-V600E amplification, which conferred resistance to MEK and BRAF inhibitors. The resistant cells had sustained MAPK activation and persistent phosphorylation of S6K. A triple combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 led to sustained tumor growth inhibition. Hence, concurrent genetic events that sustain MAPK signaling can underlie resistance to both BRAF and MEK inhibitors, requiring novel therapeutic strategies to overcome it
    corecore