139 research outputs found

    Assessing Sport-Sales Training Effectiveness: To Enhance Sales Performance of Prospective Sales Employees

    Get PDF
    The majority of entry-level positions within the sport industry fall in the area of sales. Yet, only recently have sportmanagement programs begun to offer courses devoted to sales education and training. The discipline of sales provides an ideal opportunity to incorporate experiential-based learning. While several recent articles have examined the application of experiential-learning to courses focused on ticket sales, this article presents the results of the first systematic assessment of such courses’ effectiveness. Specifically, this paper presents the results of an evaluation of sales-training programs that incorporate Southall, Nagel, LeGrande, and Han’s (2003) metadiscrete experiential learning model and the application of this model to a sport-sales specific curriculum as presented by Irwin, Southall and Sutton (2007). Among sampled students (N = 261), survey results revealed significant differences in all assessed categories related to students’ knowledge, skills and attitudes related to sport sales. This article discusses study findings and significance of conclusions for future sport-management program development

    Marine mammals and sonar : dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Get PDF
    This manuscript was written following the Behavioral Response Research Evaluation Workshop (BRREW), jointly sponsored by the US Office of Naval Research, US Navy Living Marine Resources, and US National Oceanic and Atmospheric Administration - National Marine Fisheries Service. PLT acknowledges funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.1. Marine mammals may be negatively affected by anthropogenic noise. Behavioural response studies (BRSs) aim to establish a relationship between the exposure dose of a stressor and associated behavioural responses of animals. A recent series of BRSs have focused on the effects of naval sonar on cetaceans. Here we review the current state of understanding of the impact of sonar on marine mammals and highlight knowledge gaps and future research priorities. 2. Many marine mammal species exhibit responses to naval sonar. However, responses are highly variable between and within individuals, species and populations, highlighting the importance of context in modulating dose-response relationships. 3. There is increasing support for the risk-disturbance hypothesis as an underlying response mechanism. This hypothesis proposes that sonar sounds may be perceived by animals as a threat, evoking an evolved anti-predator response. An understanding of responses within both the dose-response and risk-disturbance frameworks may enhance our ability to predict responsiveness for unstudied species and populations. 4. Many observed behavioural responses are energetically costly, but the way in which these responses may lead to long-term individual and population level impacts is poorly understood. Synthesis and Applications Behavioural response studies have greatly enhanced our understanding of the potential effects of navy sonar on marine mammals. Despite data gaps, we believe a dose-response approach within a risk-disturbance framework will enhance our ability to predict responsiveness for unstudied species and populations. We advocate for (1) regulatory frameworks to utilise recent peer-reviewed research findings when making predictions of impact (where feasible within assessment cycles), (2) regulatory frameworks to account for the inherent uncertainty in predictions of impact, and (3) investment in monitoring programmes that are both directed by recent research and offer opportunities for validation of predictions at the individual and population level.Publisher PDFPeer reviewe

    Understanding the combined effects of multiple stressors : a new perspective on a longstanding challenge

    Get PDF
    This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.Publisher PDFPeer reviewe

    First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar

    Get PDF
    Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.Publisher PDFPeer reviewe

    Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Get PDF
    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.This work was funded by a Wellcome Trust Senior Investigator Award (103792), Wellcome Trust Programme Grant (092545) and BBSRC Project Grant (BB/L00786X/1) to A.H.B. A.H.B acknowledges core funding to the Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.08

    Recovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound

    Get PDF
    Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa2·s SELcum; single strike sound exposure levels of 187 or 180 dB re 1 µPa2⋅s SELss respectively). This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa2·s SELcum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa2·s SELcum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa2·s SELcum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment

    An International Quiet Ocean Experiment

    Get PDF
    Author Posting. © Oceanography Society, 2011. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24, no. 2 (2011): 174–181, doi:10.5670/oceanog.2011.37.The effect of noise on marine life is one of the big unknowns of current marine science. Considerable evidence exists that the human contribution to ocean noise has increased during the past few decades: human noise has become the dominant component of marine noise in some regions, and noise is directly correlated with the increasing industrialization of the ocean. Sound is an important factor in the lives of many marine organisms, and theory and increasing observations suggest that human noise could be approaching levels at which negative effects on marine life may be occurring. Certain species already show symptoms of the effects of sound. Although some of these effects are acute and rare, chronic sublethal effects may be more prevalent, but are difficult to measure. We need to identify the thresholds of such effects for different species and be in a position to predict how increasing anthropogenic sound will add to the effects. To achieve such predictive capabilities, the Scientific Committee on Oceanic Research (SCOR) and the Partnership for Observation of the Global Oceans (POGO) are developing an International Quiet Ocean Experiment (IQOE), with the objective of coordinating the international research community to both quantify the ocean soundscape and examine the functional relationship between sound and the viability of key marine organisms. SCOR and POGO will convene an open science meeting to gather community input on the important research, observations, and modeling activities that should be included in IQOE

    The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the Prostaglandin E2 human model of headache

    Get PDF
    Using a human Prostaglandin E2 (PGE2) model of headache, we examined whether a novel potent and selective EP4 receptor antagonist, BGC20-1531, may prevent headache and dilatation of the middle cerebral (MCA) and superficial temporal artery (STA). In a three-way cross-over trial, eight healthy volunteers were randomly allocated to receive 200 and 400 mg BGC20-1531 and placebo, followed by a 25-min infusion of PGE2. We recorded headache intensity on a verbal rating scale, MCA blood flow velocity and STA diameter. There was no difference in headache response or prevention of the dilation of the MCA or the STA (P > 0.05) with either dose of BGC20-1531 relative to placebo, although putative therapeutic exposures were not reached in all volunteers. In conclusion, these data suggest that the other EP receptors may be involved in PGE2 induced headache and dilatation in normal subjects
    corecore